Supporting information

Nonvolatile Memory Based on Pentacene Organic Field-Effect Transistors with Polystyrene *para*-Substituted Oligofluorene Pendent Moieties as Polymer Electrets

Jung-Ching Hsu,^a Wen-Ya Lee,^a Hung-Chin Wu,^a Kenji Sugiyama,^b

Akira Hirao^{b,*} and Wen-Chang Chen^{a,*}

^a Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan

^c Department of Chemical Science and Technology, Faculty of Bioscience and Applied

Chemistry, Hosei University, Tokyo, Japan

^d Department of Organic and Polymeric Materials, Tokyo Institute of Technology,

2-12-1 Ookayama, Meguro-ku, Tokyo, Japan

*To whom all correspondence should be addressed.

Wen-Chang Chen (e-mail:chenwc@ntu.edu.tw);

Akira Hirao (e-mail:ahirao@polymer.titech.ac.jp)

Fig. S1. Contact angles of various polymer electrets: a) PS, b) P(St-Fl), c) P(St-Fl)₂

d)P(St-Fl)₃.

Fig. S2. Atomic force microscopy (AFM) topographies of (a) PS, (b), P(St-Fl), (c)

P(St-Fl)₂ and (d) P(St-Fl)₃ spin-coated on bare SiO₂ substrates on 3µm x 3µm areas.

Fig. S3. Illustrated conformations of the structures with *para*-substitute a) mono-, b)

di-, and c) tri- fluorene unit.

Fig. S4. Output characteristics of pentacene-based OFET memory devices.

Fig. S5. Retention time of pentacene-based OFET memory device with a) $P(St-Fl)_2$ and b) $P(St-Fl)_3$ as polymer electrets, after writing and erasing process.

Fig. S6. Reversible switching for the ON- and OFF- states of pentacene-based OFET

memory device with P(St-Fl) as polymer electret.

Fig.S7. a) Optical absorption spectra of the P(St-Fl)_n (n=1-3) thin films. b) Cylcic voltammograms of P(St-Fl)_n (n=1-3) in 0.1 M TBAP/acetonitrile solution. The HOMO energy level was determined from the onset oxidation potential (E_{onset}^{ox}) and estimated on the basis of the reference energy level of ferrocence (4.8 eV). The relation is shown by the following equations: HOMO (eV) = -e(E_{ox}^{onset} - E_{1/2}, ferrocene+ 4.8 eV). The LUMO energy level of was determined by the difference between HOMO level and optical band gap and estimated by the following equations: LUMO (eV) = HOMO + E_g^{opt}.

Fig. S8. Transfer curves of the pentacene-based OFET memory device based on the P(St-Fl) polymer electret using different thicknesses.