Electronic supplementary information for

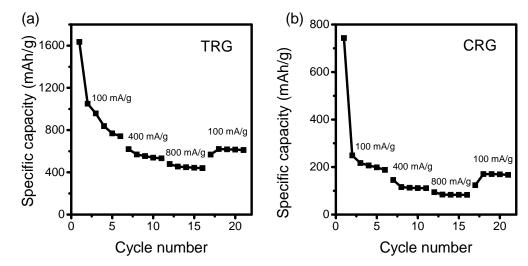
Chemically derived graphene/metal oxide hybrids as electrodes for electrochemical energy storage: Pre-graphenization or post-graphenization?

Cheng-Meng Chen^{a,b}, Qiang Zhang^{b,c}, Jia-Qi Huang^c, Wei Zhang^b, Xiao-Chen Zhao^{b,f}, Chun-Hsien Huang^{b,e}, Fei Wei^c, Yong-Gang Yang^a, Mao-Zhang Wang^a, and Dang Sheng Su^{b,d*}

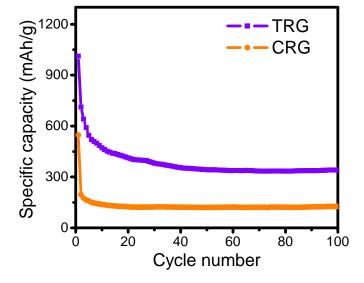
E-mail: dangsheng@fhi-berlin.mpg.de

Corresponding authors: dangsheng@fhi-berlin.mpg.de

^{a.} Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, China


^{b.} Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany

^{c.} Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China


^{d.} Catalysis and Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China

^{e.} Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu 30013, Taiwan

^{f.} State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, PO Box 110, Dalian 116023, China.

Figure S1. The discharge capacity of (a) pure TRG and (b) pure CRG anode materials at different charge/discharge currents.

Figure S2. The discharge capacity of TRG and CRG vs. cycle number for CRG and TRG at a charge-discharge current of 400 mA g^{-1} .