ELECTRONIC SUPPLEMENTARY INFORMATION FOR: Structure, Photophysics, and Photooxidation of Crowded Diethynyltetracenes

Jingjing Zhang, Syena Sarrafpour, Terry Haas, Peter Müller, and Samuel W. Thomas III*

Department of Chemistry, Tufts University, Medford MA 02155 USA

*To whom correspondence should be addressed. E-mail: Sam.Thomas@tufts.edu

Supplemental Figures

Figure S3. First order kinetics of reaction of **4T** during irradiation of methylene blue in CHCl₃.

Figure S4. First order kinetics of reaction of **3D** during irradiation of methylene blue in CHCl₃.

Figure S5. First order kinetics of reaction of **4D** during irradiation of methylene blue in CHCl₃.

Figure S6. First order kinetics of reaction of **4P** during irradiation of methylene blue in CHCl₃.

Xray Crystallography.

Low-temperature diffraction data were collected on a Bruker-AXS X8 Kappa Duo diffractometer coupled to a Smart Apex2 CCD detector with Mo K α radiation ($\lambda = 0.71073$ Å) from an $I\mu S$ micro-source), performing φ -and ω -scans. The structures were solved by direct methods using SHELXS^[1] and refined against F^2 on all data by full-matrix least squares with SHELXL-97^[2] following established refinement strategies^[3]. All non-hydrogen atoms were refined anisotropically; all hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups). Both structures were deposited with the Cambridge Crystallographic Data Centre and the corresponding deposition numbers are CCDC 853371 and CCDC 853372, respectively. Details of the data quality, refinement statistics, bond distances and -angles as well as other parameters are listed in tables 1 to 10.

Table 1. Crystal data and structure refinement for	ST2.	
Identification code	ST2	
Empirical formula	$C_{48}H_{32}O_2$	
Formula weight	640.74	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 7.0225(15) Å	<i>α</i> = 101.509(7)°.
	b = 11.456(3) Å	β=96.474(7)°.
	c = 22.004(6) Å	$\gamma = 104.936(5)^{\circ}$.
Volume	1650.7(7) Å ³	
Ζ	2	
Density (calculated)	1.289 Mg/m ³	
Absorption coefficient	0.077 mm ⁻¹	
<i>F</i> (000)	672	
Crystal size	0.30 x 0.20 x 0.01 mm ³	
Theta range for data collection	1.89 to 30.55°.	
Index ranges	-10<=h<=10, -16<=k<=16, -31	<= <i>l</i> <=30
Reflections collected	60686	
Independent reflections	9944 [$R_{int} = 0.0505$]	
Completeness to theta = 30.55°	98.5 %	
Absorption correction	Semi-empirical from equivalent	nts
Max. and min. transmission	0.9996 and 0.9772	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	9944 / 0 / 453	
Goodness-of-fit on F^2	1.023	
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	R1 = 0.0551, wR2 = 0.1310	
<i>R</i> indices (all data)	R1 = 0.0977, wR2 = 0.1535	
Largest diff. peak and hole	0.384 and -0.250 e.Å ⁻³	

	X	V	Z	U(ea)
		5		
C(8)	4196(2)	1362(1)	2219(1)	20(1)
C(13)	4447(2)	3939(1)	2417(1)	22(1)
O(2)	9746(2)	-3862(1)	-210(1)	32(1)
C(9)	3098(2)	1920(1)	2665(1)	19(1)
C(11)	5393(2)	2118(1)	1883(1)	20(1)
C(12)	5488(2)	3382(1)	1969(1)	21(1)
C(43)	6622(2)	1654(1)	1431(1)	20(1)
C(5)	1642(2)	-144(2)	2872(1)	21(1)
C(6)	2707(2)	-693(1)	2433(1)	20(1)
C(7)	3966(2)	49(1)	2112(1)	20(1)
C(14)	3292(2)	3218(1)	2765(1)	21(1)
C(10)	1833(2)	1142(1)	2983(1)	20(1)
C(19)	654(2)	1576(2)	3419(1)	23(1)
C(28)	4931(2)	-593(2)	1673(1)	22(1)
C(30)	6603(2)	-1992(1)	932(1)	22(1)
O(1)	-5891(2)	1795(1)	5462(1)	35(1)
C(32)	9657(2)	-2473(2)	712(1)	26(1)
C(16)	6751(2)	5386(2)	1709(1)	29(1)
C(48)	5981(2)	1414(2)	784(1)	24(1)
$\dot{C(1)}$	2415(2)	-2011(2)	2316(1)	24(1)
C(37)	2343(2)	3885(2)	3245(1)	23(1)
C(29)	5611(2)	-1281(2)	1331(1)	23(1)
C(31)	8662(2)	-1823(2)	1100(1)	24(1)
C(35)	5581(2)	-2843(2)	373(1)	24(1)
C(17)	5752(2)	5937(2)	2160(1)	29(1)
C(18)	4649(2)	5246(2)	2503(1)	26(1)
C(33)	8623(2)	-3294(2)	149(1)	25(1)
C(2)	1175(2)	-2729(2)	2616(1)	26(1)
C(4)	372(2)	-940(2)	3183(1)	26(1)
C(44)	8538(2)	1611(2)	1652(1)	24(1)
C(15)	6640(2)	4158(2)	1621(1)	26(1)
C(20)	-462(2)	1677(2)	3793(1)	25(1)
C(34)	6560(2)	-3490(2)	-22(1)	25(1)
C(45)	9792(2)	1347(2)	1228(1)	27(1)
C(21)	-1794(2)	1743(2)	4237(1)	24(1)
C(24)	-4489(2)	1750(2)	5080(1)	27(1)
C(3)	152(3)	-2184(2)	3060(1)	28(1)
C(25)	-2706(3)	1472(2)	5244(1)	29(1)
C(46)	9147(3)	1123(2)	589(1)	28(1)
C(23)	-4932(3)	2010(2)	4501(1)	31(1)
C(42)	3335(3)	4354(2)	3866(1)	31(1)
C(38)	522(3)	4119(2)	3075(1)	28(1)
C(26)	-1374(3)	1475(2)	4821(1)	29(1)
C(47)	7232(3)	1140(2)	363(1)	27(1)
C(22)	-3600(3)	2014(2)	4084(1)	30(1)
C(39)	-330(3)	4750(2)	3525(1)	34(1)
C(36)	8753(3)	-4644(2)	-809(1)	36(1)
C(41)	2477(3)	4987(2)	4315(1)	39(1)
C(40)	638(3)	5174(2)	4147(1)	41(1)
C(27)	-5381(3)	1671(2)	6087(1)	41(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for st2. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table 3.	Bond lengths [Å] and angles [°] for	st2.

C(8)-C(11)	1.423(2)	C(44)-H(44)	0.9500
C(8)-C(7)	1.439(2)	C(15)-H(15)	0.9500
C(8)-C(9)	1.462(2)	C(20) - C(21)	1.432(2)
C(13)-C(14)	1.404(2)	C(34)-H(34)	0.9500
C(13)-C(12)	1.437(2)	C(45) - C(46)	1.378(3)
C(13)-C(18)	1.439(2)	C(45)-H(45)	0.9500
O(2)-C(33)	1.3671(19)	C(21)-C(26)	1.396(2)
O(2)-C(36)	1.424(2)	C(21)-C(22)	1.403(2)
C(9)-C(14)	1.427(2)	C(24)-C(23)	1.384(2)
C(9)-C(10)	1.434(2)	C(24)-C(25)	1.396(2)
C(11)-C(12)	1.406(2)	C(3)-H(3)	0.9500
C(11)-C(43)	1.495(2)	C(25)-C(26)	1.391(2)
C(12)-C(15)	1.439(2)	C(25)-H(25)	0.9500
C(43) - C(48)	1.393(2)	C(46) - C(47)	1.386(2)
C(43) - C(44)	1.395(2)	C(46)-H(46)	0.9500
C(5) - C(10)	1.413(2)	C(23) - C(22)	1.382(2)
C(5)-C(6)	1.432(2)	C(23)-H(23)	0.9500
C(5)-C(4)	1.436(2)	C(42)-C(41)	1.393(3)
C(6) - C(7)	1.413(2)	C(42)-H(42)	0.9500
C(6)-C(1)	1.436(2)	C(38)-C(39)	1.389(2)
C(7)-C(28)	1.434(2)	C(38)-H(38)	0.9500
C(14)-C(37)	1.498(2)	C(26)-H(26)	0.9500
C(10)-C(19)	1.432(2)	C(47)-H(47)	0.9500
C(19)-C(20)	1.208(2)	C(22)-H(22)	0.9500
C(28)-C(29)	1.205(2)	C(39)-C(40)	1.389(3)
C(30)-C(35)	1.393(2)	C(39)-H(39)	0.9500
C(30)-C(31)	1.404(2)	C(36)-H(36A)	0.9800
C(30)-C(29)	1.438(2)	C(36)-H(36B)	0.9800
O(1)-C(24)	1.3704(19)	C(36)-H(36C)	0.9800
O(1)-C(27)	1.425(2)	C(41)-C(40)	1.384(3)
C(32)-C(31)	1.385(2)	C(41)-H(41)	0.9500
C(32)-C(33)	1.389(2)	C(40)-H(40)	0.9500
C(32)-H(32)	0.9500	C(27)-H(27A)	0.9800
C(16)-C(15)	1.362(2)	C(27)-H(27B)	0.9800
C(16)-C(17)	1.418(2)	C(27)-H(27C)	0.9800
C(16)-H(16)	0.9500		
C(48)-C(47)	1.392(2)	C(11)-C(8)-C(7)	121.67(13)
C(48)-H(48)	0.9500	C(11)-C(8)-C(9)	119.35(13)
C(1)-C(2)	1.360(2)	C(7)-C(8)-C(9)	118.93(13)
C(1)-H(1)	0.9500	C(14)-C(13)-C(12)	120.25(14)
C(37)-C(42)	1.393(2)	C(14)-C(13)-C(18)	121.54(14)
C(37)-C(38)	1.399(2)	C(12)-C(13)-C(18)	118.21(14)
C(31)-H(31)	0.9500	C(33)-O(2)-C(36)	116.95(14)
C(35)-C(34)	1.385(2)	C(14)-C(9)-C(10)	121.79(13)
C(35)-H(35)	0.9500	C(14)-C(9)-C(8)	119.22(13)
C(17)-C(18)	1.360(2)	C(10)-C(9)-C(8)	118.98(13)
С(17)-Н(17)	0.9500	C(12)-C(11)-C(8)	120.31(14)
C(18)-H(18)	0.9500	C(12)-C(11)-C(43)	115.87(13)
C(33)-C(34)	1.402(2)	C(8)-C(11)-C(43)	123.82(13)
C(2)-C(3)	1.415(2)	C(11)-C(12)-C(13)	120.41(13)
C(2)-H(2)	0.9500	C(11)-C(12)-C(15)	121.44(14)
C(4)-C(3)	1.360(2)	C(13)-C(12)-C(15)	118.14(14)
C(4)-H(4)	0.9500	C(48)-C(43)-C(44)	118.97(14)
C(44)-C(45)	1.396(2)	C(48)-C(43)-C(11)	120.44(13)

C(44)-C(43)-C(11)	120.07(14)	C(3)-C(4)-C(5)	121.38(15)
C(10)-C(5)-C(6)	12012(13)	C(3)-C(4)-H(4)	1193
C(10)-C(5)-C(4)	121 78(14)	C(5)- $C(4)$ - $H(4)$	119.3
C(6)-C(5)-C(4)	118 10(14)	C(43)-C(44)-C(45)	120.08(15)
C(7) - C(6) - C(5)	120 28(14)	C(43)-C(44)-H(44)	120.00(15)
C(7)- $C(6)$ - $C(1)$	120.20(14) 121 29(14)	C(45) - C(44) - H(44)	120.0
C(5) - C(6) - C(1)	118 41(14)	C(16) - C(15) - C(12)	120.0 121.51(15)
C(6) - C(7) - C(28)	115.93(14)	C(16)-C(15)-H(15)	110.2
C(6)-C(7)-C(8)	120.74(13)	C(12)-C(15)-H(15)	119.2
C(28) C(7) C(8)	120.74(13) 123.31(13)	C(12) - C(20) - C(21)	177.61(18)
C(12) - C(14) C(0)	120.36(14)	C(15) - C(20) - C(21) C(25) - C(24) - C(23)	177.01(18) 110.10(15)
C(13) - C(14) - C(3)	120.30(14) 116 77(14)	C(35)-C(34)-C(35) C(35)-C(34)-H(34)	119.19(13)
C(13)-C(14)-C(37)	110.77(14) 122.85(12)	$C(33)-C(34)-\Pi(34)$ $C(23)-C(24)-\Pi(34)$	120.4
C(5) - C(14) - C(57)	122.03(13) 115.02(12)	$C(35)-C(34)-\Pi(34)$	120.4 120.26(15)
C(5) - C(10) - C(19)	113.02(13) 120.05(14)	C(46) - C(45) - C(44)	120.30(13)
C(3)-C(10)-C(9)	120.93(14)	$C(40)-C(45)-\Pi(45)$	119.8
C(19)-C(10)-C(9)	124.02(14)	C(44)- $C(45)$ - $H(45)$	119.8
C(20) - C(19) - C(10)	165.80(17)	C(26)- $C(21)$ - $C(22)$	118.48(15)
C(29)-C(28)-C(7)	1/0./3(16)	C(26)- $C(21)$ - $C(20)$	120.68(15)
C(35)-C(30)-C(31)	118.48(14)	C(22)- $C(21)$ - $C(20)$	120.75(15)
C(35)-C(30)-C(29)	121.75(15)	O(1)-C(24)-C(23)	115.57(15)
C(31)-C(30)-C(29)	119.76(15)	O(1)-C(24)-C(25)	124.11(16)
C(24)-O(1)-C(27)	116.90(14)	C(23)-C(24)-C(25)	120.33(15)
C(31)-C(32)-C(33)	120.09(15)	C(4)-C(3)-C(2)	120.49(15)
C(31)-C(32)-H(32)	120.0	C(4)-C(3)-H(3)	119.8
C(33)-C(32)-H(32)	120.0	C(2)-C(3)-H(3)	119.8
C(15)-C(16)-C(17)	120.17(15)	C(26)-C(25)-C(24)	119.09(16)
C(15)-C(16)-H(16)	119.9	C(26)-C(25)-H(25)	120.5
C(17)-C(16)-H(16)	119.9	C(24)-C(25)-H(25)	120.5
C(47)-C(48)-C(43)	120.67(15)	C(45)-C(46)-C(47)	120.08(15)
C(47)-C(48)-H(48)	119.7	C(45)-C(46)-H(46)	120.0
C(43)-C(48)-H(48)	119.7	C(47)-C(46)-H(46)	120.0
C(2)-C(1)-C(6)	121.32(15)	C(22)-C(23)-C(24)	120.32(16)
C(2)-C(1)-H(1)	119.3	C(22)-C(23)-H(23)	119.8
C(6)-C(1)-H(1)	119.3	C(24)-C(23)-H(23)	119.8
C(42)-C(37)-C(38)	118.70(15)	C(37)-C(42)-C(41)	120.54(18)
C(42)-C(37)-C(14)	120.01(15)	C(37)-C(42)-H(42)	119.7
C(38)-C(37)-C(14)	121.15(15)	C(41)-C(42)-H(42)	119.7
C(28)-C(29)-C(30)	174.03(17)	C(39)-C(38)-C(37)	120.51(17)
C(32)-C(31)-C(30)	120.63(16)	C(39)-C(38)-H(38)	119.7
C(32)-C(31)-H(31)	119.7	C(37)-C(38)-H(38)	119.7
C(30)-C(31)-H(31)	119.7	C(25)-C(26)-C(21)	121.25(15)
C(34)-C(35)-C(30)	121.46(15)	C(25)-C(26)-H(26)	119.4
C(34)-C(35)-H(35)	119.3	C(21)-C(26)-H(26)	119.4
C(30)-C(35)-H(35)	119.3	C(46)-C(47)-C(48)	119.81(16)
C(18)-C(17)-C(16)	120.66(15)	C(46)-C(47)-H(47)	120.1
C(18)-C(17)-H(17)	119.7	C(48)-C(47)-H(47)	120.1
C(16)-C(17)-H(17)	119.7	C(23)-C(22)-C(21)	120.53(16)
C(17)-C(18)-C(13)	121.28(15)	C(23)-C(22)-H(22)	119.7
C(17)-C(18)-H(18)	119.4	C(21)-C(22)-H(22)	1197
C(13)-C(18)-H(18)	119.4	C(38)-C(39)-C(40)	120 21(18)
O(2)-C(33)-C(32)	115.74(15)	C(38)-C(39)-H(39)	119.9
O(2)-C(33)-C(34)	124 15(16)	C(40)-C(39)-H(39)	119.9
C(32)-C(33)-C(34)	120 11(15)	O(2)-C(36)-H(36A)	109 5
C(1)-C(2)-C(3)	120 29(15)	O(2)-C(36)-H(36R)	109.5
C(1)-C(2)-H(2)	119.9	H(36A)-C(36)-H(36B)	109.5
C(3)-C(2)-H(2)	119.9	$\Omega(2)$ - $\Gamma(36)$ - $H(36C)$	109.5
$C(3)^{-}C(2)^{-}\Pi(2)$	117.7	0(2) - 0(30) - 11(300)	109.5

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2012

H(36A)-C(36)-H(36C)	109.5	C(39)-C(40)-H(40)	120.2
H(36B)-C(36)-H(36C)	109.5	O(1)-C(27)-H(27A)	109.5
C(40)-C(41)-C(42)	120.29(19)	O(1)-C(27)-H(27B)	109.5
C(40)-C(41)-H(41)	119.9	H(27A)-C(27)-H(27B)	109.5
C(42)-C(41)-H(41)	119.9	O(1)-C(27)-H(27C)	109.5
C(41)-C(40)-C(39)	119.64(17)	H(27A)-C(27)-H(27C)	109.5
C(41)-C(40)-H(40)	120.2	H(27B)-C(27)-H(27C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
<u>((0)</u>	21(1)	10(1)	22(1)	7 (1)	2(1)	0(1)
C(8)	21(1)	18(1)	22(1)	5(1)	$\frac{3(1)}{2(1)}$	9(1)
C(13)	22(1)	18(1)	26(1)	6(1)	3(1)	8(1)
O(2)	35(1)	28(1)	40(1)	8(1)	18(1)	$\frac{1}{(1)}$
C(9)	21(1)	18(1)	21(1)	6(1)	4(1)	8(1)
C(11)	20(1)	19(1)	22(1)	6(1)	4(1)	8(1)
C(12)	21(1)	18(1)	26(1)	8(1)	4(1)	8(1)
C(43)	22(1)	16(1)	$\frac{2}{(1)}$	8(1)	$\frac{8(1)}{2(1)}$	7(1)
C(5)	22(1)	2I(1)	22(1)	8(1) 7(1)	3(1)	/(1)
C(6)	22(1)	18(1)	22(1)	7(1)	4(1)	8(1)
C(1)	21(1) 22(1)	19(1)	23(1)	/(1)	4(1)	9(1)
C(14)	23(1)	18(1)	23(1)	5(1)	4(1)	9(1)
C(10)	22(1)	19(1)	20(1)	5(1)	$\frac{3(1)}{5(1)}$	8(1)
C(19)	$\frac{2}{(1)}$	20(1)	25(1)	/(1)	5(1)	9(1)
C(28)	24(1) 27(1)	18(1) 17(1)	$\frac{2}{(1)}$	9(1)	5(1)	/(1) 10(1)
C(30)	$\frac{2}{(1)}$	$\frac{1}{(1)}$	20(1) 22(1)	10(1)	9(1)	10(1) 12(1)
O(1)	30(1)	44(1)	33(1)	9(1)	13(1)	13(1) 10(1)
C(32)	23(1) 26(1)	20(1) 24(1)	34(1)	13(1) 15(1)	/(1) 10(1)	10(1)
C(10)	20(1) 26(1)	24(1) 21(1)	40(1) 20(1)	13(1)	10(1)	0(1)
C(48)	20(1) 27(1)	21(1) 10(1)	29(1)	9(1) 8(1)	0(1) 5(1)	9(1) 10(1)
C(1) C(27)	$\frac{2}{(1)}$	19(1) 16(1)	28(1)	$\delta(1)$	3(1) 0(1)	10(1) 10(1)
C(37)	29(1) 27(1)	10(1) 18(1)	20(1) 27(1)	0(1)	9(1) 6(1)	$\frac{10(1)}{2(1)}$
C(29) C(21)	$\frac{27(1)}{27(1)}$	10(1) 18(1)	$\frac{2}{(1)}$	9(1) 8(1)	6(1)	0(1) 9(1)
C(31) C(35)	$\frac{27(1)}{24(1)}$	10(1) 21(1)	30(1)	0(1)	$\frac{0(1)}{7(1)}$	0(1)
C(33) C(17)	24(1) 28(1)	$\frac{21(1)}{17(1)}$	$\frac{30(1)}{44(1)}$	$\frac{9(1)}{10(1)}$	7(1) 7(1)	$\frac{9(1)}{10(1)}$
C(17) C(18)	26(1)	1/(1) 10(1)	$\frac{44(1)}{34(1)}$	6(1)	$\frac{7(1)}{6(1)}$	10(1) 10(1)
C(10) C(33)	20(1) 31(1)	$\frac{19(1)}{21(1)}$	34(1) 32(1)	12(1)	16(1)	10(1) 15(1)
C(33)	$\frac{31(1)}{28(1)}$	10(1)	32(1) 35(1)	12(1) 12(1)	6(1)	$\frac{13(1)}{8(1)}$
C(2)	23(1) 27(1)	$\frac{19(1)}{26(1)}$	30(1)	12(1) 11(1)	11(1)	10(1)
C(44)	27(1) 25(1)	20(1) 21(1)	27(1)	7(1)	5(1)	9(1)
C(15)	25(1)	21(1) 20(1)	$\frac{27(1)}{35(1)}$	$\frac{7(1)}{11(1)}$	9(1)	$\frac{9(1)}{8(1)}$
C(20)	23(1) 28(1)	20(1) 24(1)	26(1)	8(1)	5(1)	10(1)
C(34)	32(1)	20(1)	24(1)	6(1)	8(1)	9(1)
C(45)	23(1)	23(1)	$\frac{2}{39(1)}$	9(1)	7(1)	9(1)
C(21)	$\frac{23(1)}{28(1)}$	22(1)	25(1)	5(1)	8(1)	9(1)
C(24)	27(1)	27(1)	29(1)	4(1)	10(1)	8(1)
C(3)	29(1)	25(1)	36(1)	14(1)	11(1)	8(1)
C(25)	$\frac{-3}{33(1)}$	33(1)	26(1)	10(1)	8(1)	12(1)
C(46)	33(1)	22(1)	36(1)	10(1)	16(1)	11(1)
C(23)	26(1)	36(1)	33(1)	8(1)	7(1)	13(1)
C(42)	38(1)	25(1)	30(1)	4(1)	5(1)	10(1)
C(38)	31(1)	22(1)	35(1)	9(1)	10(1)	12(1)
C(26)	29(1)	33(1)	31(1)	10(1)	8(1)	16(1)
C(47)	35(1)	23(1)	26(1)	9(1)	9(1)	10(1)
C(22)	30(1)	36(1)	28(1)	10(1)	6(1)	14(1)
C(39)	38(1)	23(1)	51(1)	13(1)	21(1)	17(1)
C(36)	46(1)	29(1)	38(1)	8(1)	23(1)	14(1)
C(41)	57(1)	27(1)	31(1)	1(1)	10(1)	11(1)
C(40)	58(1)	26(1)	45(1)	7(1)	28(1)	18(1)
C(27)	39(1)	57(1)	30(1)	12(1)	16(1)	14(1)

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for st2. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 a^{*2}U^{11} + ... + 2hk a^* b^* U^{12}]$

	Х	у	Z	U(eq)
H(32)	11048	-2356	832	32
H(16)	7500	5875	1467	34
H(48)	4677	1438	629	29
H(1)	3102	-2389	2023	28
H(31)	9380	-1258	1483	29
H(35)	4180	-2983	260	28
H(17)	5854	6797	2223	34
H(18)	3999	5634	2805	31
H(2)	994	-3601	2528	32
H(4)	-330	-591	3481	31
H(44)	8990	1761	2092	29
H(15)	7339	3805	1323	31
H(34)	5844	-4060	-404	30
H(45)	11098	1321	1380	33
H(3)	-694	-2690	3273	34
H(25)	-2406	1284	5638	35
H(46)	10015	957	303	34
H(23)	-6157	2187	4390	37
H(42)	4607	4241	3984	37
H(38)	-137	3845	2649	33
H(26)	-155	1291	4931	35
H(47)	6776	966	-77	32
H(22)	-3911	2202	3689	36
H(39)	-1579	4891	3406	41
H(36A)	7614	-5295	-755	54
H(36B)	9688	-5028	-1012	54
H(36C)	8274	-4148	-1073	54
H(41)	3157	5292	4739	47
H(40)	42	5589	4456	49
H(27A)	-5218	841	6071	62
H(27B)	-6448	1781	6324	62
H(27C)	-4124	2304	6295	62

Table 5. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (Å $^2x\;10\;^3$) for st2.

Table 6. Crystal data and structure refinement for	4T.	
Identification code	4T	
Empirical formula	$C_{52}H_{60}Si_2$	
Formula weight	741.18	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	$P2_{1}2_{1}2_{1}$	
Unit cell dimensions	a = 9.5021(8) Å	<i>α</i> =90°.
	b = 18.5086(15) Å	<i>β</i> =90°.
	c = 24.385(2) Å	$\gamma = 90^{\circ}$.
Volume	4288.6(6) Å ³	
Ζ	4	
Density (calculated)	1.148 Mg/m ³	
Absorption coefficient	0.117 mm ⁻¹	
<i>F</i> (000)	1600	
Crystal size	0.23 x 0.17 x 0.09 mm ³	
Theta range for data collection	1.38 to 30.53°.	
Index ranges	-13<=h<=13, -26<=k<=26, -34	<= <i>l</i> <=34
Reflections collected	92146	
Independent reflections	13123 [$R_{int} = 0.0605$]	
Completeness to theta = 30.53°	99.9 %	
Absorption correction	Semi-empirical from equivaler	its
Max. and min. transmission	0.9895 and 0.9736	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	13123 / 0 / 499	
Goodness-of-fit on F^2	1.036	
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	R1 = 0.0364, wR2 = 0.0831	
R indices (all data)	R1 = 0.0460, wR2 = 0.0889	
Absolute structure parameter	0.01(6)	
Largest diff. peak and hole	0.299 and -0.198 e.Å-3	

	Х	У	Ζ	U(eq)
$\overline{\mathrm{Si}(1)}$	12503(1)	7853(1)	2178(1)	14(1)
Si(2)	2914(1)	10495(1)	4330(1)	14(1)
C(12)	7874(1)	9055(1)	2811(1)	14(1)
C(7)	9230(1)	7953(1)	4004(1)	15(1)
C(10)	8007(1)	9157(1)	4558(1)	14(1)
C(11)	8729(1)	8574(1)	3112(1)	14(1)
C(6)	8810(1)	8647(1)	4850(1)	15(1)
C(9)	7803(1)	9073(1)	3983(1)	13(1)
C(8)	8594(1)	8522(1)	3697(1)	13(1)
C(48)	6564(1)	9777(1)	5288(1)	17(1)
C(5)	9325(1)	8010(1)	4577(1)	15(1)
C(47)	7514(1)	9816(1)	4854(1)	13(1) 14(1)
C(41)	9637(1)	7268(1)	3727(1)	14(1) 16(1)
C(22)	4636(1)	10175(1)	4083(1)	16(1)
C(22)	9856(1)	8226(1)	2824(1)	16(1)
C(13)	6865(1)	9495(1)	2024(1) 3093(1)	10(1) 14(1)
C(13)	0805(1)	8214(1)	5708(1)	21(1)
C(2) C(25)	3620(2)	$\frac{6214(1)}{11248(1)}$	3700(1)	21(1) 17(1)
C(33) C(17)	5214(1)	11340(1) 0048(1)	4/42(1) 2216(1)	$\frac{1}{(1)}$
C(17)	11001(1)	5940(1)	2210(1) 3742(1)	17(1)
C(42)	11001(1) 12124(1)	0983(1)	$\frac{5742(1)}{1624(1)}$	$\frac{1}{(1)}$
C(20)	12134(1) 7046(1)	7130(1) 0520(1)	1034(1) 1038(1)	20(1) 10(1)
C(10)	/040(1)	9329(1)	1938(1)	19(1)
C(14)	0841(1) 0050(2)	9300(1)	$\frac{30}{1(1)}$	14(1) 10(1)
C(4)	9959(2)	/454(1) 8720(1)	4906(1)	19(1)
C(1)	9142(1)	8/39(1)	5420(1)	18(1) 10(1)
C(32)	1/46(1)	10664(1)	$\frac{3}{1}$	19(1)
C(20)	10863(2)	8035(1)	2556(1)	18(1)
C(38)	211/(1)	9/51(1)	4/65(1)	18(1)
C(18)	5925(1) 9597(2)	9932(1)	$\frac{2}{4(1)}$	1/(1)
C(46)	8587(2)	$\frac{68}{6(1)}$	3460(1)	20(1)
C(49)	6198(1)	10393(1)	5584(1)	21(1)
C(15)	/945(1)	9099(1)	2224(1)	18(1)
C(34)	1358(2)	99/3(1)	3404(1)	32(1)
C(40)	260/(2)	8995(1)	4586(1)	29(1)
C(52)	8091(1)	10486(1)	4720(1)	18(1)
C(33)	2360(2)	11224(1)	3317(1)	27(1)
C(27)	11/58(2)	6421(1)	1886(1)	31(1)
C(29)	13824(2)	7517(1)	2693(1)	21(1)
C(28)	10982(2)	7398(1)	1235(1)	27(1)
C(21)	5714(1)	9898(1)	3927(1)	15(1)
C(50)	6785(2)	11055(1)	5450(1)	23(1)
C(37)	1824(2)	11744(1)	4858(1)	22(1)
C(3)	10210(2)	7553(1)	5449(1)	21(1)
C(43)	11295(2)	6325(1)	3494(1)	22(1)
C(23)	13131(2)	8734(1)	1869(1)	20(1)
C(45)	8884(2)	6216(1)	3212(1)	24(1)
C(39)	2384(2)	9840(1)	5381(1)	29(1)
C(25)	11935(2)	9257(1)	1718(1)	33(1)
C(44)	10242(2)	5942(1)	3230(1)	24(1)
C(31)	14103(2)	8081(1)	3142(1)	33(1)
C(36)	4300(2)	11872(1)	4497(1)	25(1)

Table 7. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for 4t. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is The Royal Society of Chemistry 2012

C(51)	7735(2)	11102(1)	5017(1)	23(1)
C(24)	14107(2)	8612(1)	1376(1)	28(1)
C(30)	15206(2)	7277(1)	2427(1)	50(1)

Table 8. Bond lengths [Å] and angles $[\circ]$ for 4t.

Si(1)-C(20)	1.8423(14)	C(32)-C(34)	1.534(2)
Si(1)-C(29)	1.8819(14)	C(32)-C(33)	1.538(2)
Si(1)-C(26)	1.8836(14)	C(32)-H(32)	1.0000
Si(1)-C(23)	1.8923(15)	C(38)-C(39)	1.532(2)
Si(2)-C(22)	1.8413(14)	C(38)-C(40)	1.5375(19)
Si(2)-C(32)	1.8880(14)	C(38)-H(38)	1.0000
Si(2)-C(35)	1.8930(14)	C(18)-H(18)	0.9500
Si(2)-C(38)	1.8960(14)	C(46)-C(45)	1.3917(19)
C(12)-C(11)	1.4103(17)	C(46)-H(46)	0.9500
C(12)-C(13)	1.4335(17)	C(49)-C(50)	1.385(2)
C(12)-C(15)	1.4355(18)	C(49)-H(49)	0.9500
C(7)-C(5)	1.4051(18)	C(15)-H(15)	0.9500
C(7) - C(8)	1.4258(18)	C(34)-H(34A)	0.9800
C(7)-C(41)	1.4873(18)	C(34)-H(34B)	0.9800
C(10)-C(6)	1.4073(17)	C(34)-H(34C)	0.9800
C(10) - C(9)	1.4234(17)	C(40)-H(40A)	0.9800
C(10) - C(47)	1.4913(17)	C(40)-H(40B)	0.9800
C(11)-C(8)	1.4346(17)	C(40)-H(40C)	0.9800
C(11)-C(19)	1.4347(17)	C(52)-C(51)	1.3915(19)
C(6)-C(1)	1.4370(18)	C(52)-H(52)	0.9500
C(6)-C(5)	1.4398(17)	C(33)-H(33A)	0.9800
C(9)-C(14)	1.4344(17)	C(33)-H(33B)	0.9800
C(9)-C(8)	1.4472(17)	C(33)-H(33C)	0.9800
C(48)-C(49)	1.3934(19)	C(27)-H(27A)	0.9800
C(48)-C(47)	1.3936(18)	C(27)-H(27B)	0.9800
C(48)-H(48)	0.9500	C(27)-H(27C)	0.9800
C(5)-C(4)	1.4355(18)	C(29)-C(30)	1.532(2)
C(47)-C(52)	1.3944(18)	C(29)-C(31)	1.534(2)
C(41)- $C(46)$	1.3949(19)	C(29)-H(29)	1.0000
C(41)- $C(42)$	1.3983(18)	C(28)-H(28A)	0.9800
C(22)-C(21)	1.2080(18)	C(28)-H(28B)	0.9800
C(19)-C(20)	1.2109(19)	C(28)-H(28C)	0.9800
C(13)-C(14)	1.4108(17)	C(50)-C(51)	1.393(2)
C(13)-C(18)	1.4331(18)	C(50)-H(50)	0.9500
C(2)-C(1)	1.3641(19)	C(37)-H(37A)	0.9800
C(2)-C(3)	1.424(2)	C(37)-H(37B)	0.9800
C(2)-H(2)	0.9500	C(37)-H(37C)	0.9800
C(35)-C(36)	1.5365(19)	C(3)-H(3)	0.9500
C(35)-C(37)	1.5377(18)	C(43)-C(44)	1.384(2)
C(35)-H(35)	1.0000	C(43)-H(43)	0.9500
C(17)-C(18)	1.365(2)	C(23)-C(24)	1.534(2)
C(17)-C(16)	1.4220(19)	C(23)-C(25)	1.537(2)
C(17)-H(17)	0.9500	C(23)-H(23)	1.0000
C(42)-C(43)	1.3934(19)	C(45)-C(44)	1.387(2)
C(42)-H(42)	0.9500	C(45)-H(45)	0.9500
C(26)-C(28)	1.530(2)	C(39)-H(39A)	0.9800
C(26)-C(27)	1.535(2)	C(39)-H(39B)	0.9800
C(26)-H(26)	1.0000	C(39)-H(39C)	0.9800
C(16)-C(15)	1.3606(19)	C(25)-H(25A)	0.9800
С(16)-Н(16)	0.9500	C(25)-H(25B)	0.9800
C(14)-C(21)	1.4354(17)	C(25)-H(25C)	0.9800
C(4)-C(3)	1.359(2)	C(44)-H(44)	0.9500
C(4)-H(4)	0.9500	C(31)-H(31A)	0.9800
C(1)-H(1)	0.9500	C(31)-H(31B)	0.9800

C(31)-H(31C)	0.9800	C(42)-C(41)-C(7)	123.21(12)
C(36)-H(36A)	0.9800	C(21)-C(22)-Si(2)	173.52(12)
C(36)-H(36B)	0.9800	C(20)-C(19)-C(11)	170.21(14)
C(36)-H(36C)	0.9800	C(14)-C(13)-C(18)	121.56(12)
C(51)-H(51)	0.9500	C(14)-C(13)-C(12)	119 85(11)
C(24)-H(24A)	0.9800	C(18)-C(13)-C(12)	118 57(11)
C(24)-H(24B)	0.9800	C(1)-C(2)-C(3)	120.41(13)
C(24) - H(24C)	0.9800	C(1)-C(2)-H(2)	119.8
C(30)-H(30A)	0.9800	C(3)-C(2)-H(2)	119.8
C(30)-H(30R)	0.9800	C(36)-C(35)-C(37)	110.32(11)
C(30)-H(30C)	0.9800	C(36)-C(35)-Si(2)	114.96(10)
C(30)-11(30C)	0.9800	C(37)-C(35)-Si(2)	111,50(10)
C(20) = Si(1) = C(20)	106.84(6)	C(36) C(35) H(35)	111.52(7)
C(20)-Si(1)- $C(29)$	108.70(6)	C(37) C(35) H(35)	106.5
C(20)-SI(1)- $C(20)$	108.70(0)	$S_{i}(2) C(25) H(25)$	106.5
C(29)-SI(1)- $C(20)$	107.02(6)	C(18) C(17) C(16)	100.3 120.40(12)
C(20)-SI(1)- $C(23)$	107.95(0)	C(18) - C(17) - C(10)	120.49(12)
C(29)-SI(1)-C(23)	109.80(7)	$C(16) - C(17) - \Pi(17)$	119.8
C(20)-SI(1)-C(23)	111.08(0)	$C(10)-C(17)-\Pi(17)$ C(42)-C(42)-C(41)	119.8
C(22)-SI(2)-C(32)	108.49(6)	C(43) - C(42) - C(41)	120.10(13)
C(22)-Si(2)-C(35)	107.88(6)	C(43)-C(42)-H(42)	119.9
C(32)-Si(2)-C(35)	111./2(6)	C(41)-C(42)-H(42)	119.9
C(22)-Si(2)-C(38)	10/./3(6)	C(28)-C(26)-C(27)	110.39(12)
C(32)-Si(2)-C(38)	109.21(6)	C(28)-C(26)-Si(1)	112.29(10)
C(35)-Si(2)-C(38)	111.67(6)	C(27)-C(26)-Si(1)	111.58(10)
C(11)-C(12)-C(13)	119.61(11)	C(28)-C(26)-H(26)	107.4
C(11)-C(12)-C(15)	121.88(11)	C(27)-C(26)-H(26)	107.4
C(13)-C(12)-C(15)	118.47(11)	Si(1)-C(26)-H(26)	107.4
C(5)-C(7)-C(8)	119.63(11)	C(15)-C(16)-C(17)	120.45(12)
C(5)-C(7)-C(41)	119.91(11)	C(15)-C(16)-H(16)	119.8
C(8)-C(7)-C(41)	120.07(11)	C(17)-C(16)-H(16)	119.8
C(6)-C(10)-C(9)	119.85(11)	C(13)-C(14)-C(9)	120.83(11)
C(6)-C(10)-C(47)	118.34(11)	C(13)-C(14)-C(21)	116.96(11)
C(9)-C(10)-C(47)	121.50(11)	C(9)-C(14)-C(21)	121.80(11)
C(12)-C(11)-C(8)	120.59(11)	C(3)-C(4)-C(5)	121.47(12)
C(12)-C(11)-C(19)	117.26(11)	C(3)-C(4)-H(4)	119.3
C(8)-C(11)-C(19)	121.55(12)	C(5)-C(4)-H(4)	119.3
C(10)-C(6)-C(1)	121.91(12)	C(2)-C(1)-C(6)	121.20(13)
C(10)-C(6)-C(5)	120.05(12)	C(2)-C(1)-H(1)	119.4
C(1)-C(6)-C(5)	118.04(11)	C(6)-C(1)-H(1)	119.4
C(10)-C(9)-C(14)	123.24(11)	C(34)-C(32)-C(33)	109.80(13)
C(10)-C(9)-C(8)	118.82(11)	C(34)-C(32)-Si(2)	113.33(10)
C(14)-C(9)-C(8)	117.94(11)	C(33)-C(32)-Si(2)	113.02(10)
C(7)-C(8)-C(11)	122.28(11)	C(34)-C(32)-H(32)	106.7
C(7)-C(8)-C(9)	119.15(11)	C(33)-C(32)-H(32)	106.7
C(11)-C(8)-C(9)	118.56(11)	Si(2)-C(32)-H(32)	106.7
C(49)-C(48)-C(47)	120.86(13)	C(19)-C(20)-Si(1)	172.67(12)
C(49)-C(48)-H(48)	119.6	C(39)-C(38)-C(40)	109.04(12)
C(47)-C(48)-H(48)	119.6	C(39)-C(38)-Si(2)	113.79(10)
C(7)-C(5)-C(4)	121.95(12)	C(40)-C(38)-Si(2)	112.39(10)
C(7)-C(5)-C(6)	119.92(12)	C(39)-C(38)-H(38)	107.1
C(4)-C(5)-C(6)	118.11(12)	C(40)-C(38)-H(38)	107.1
C(48)-C(47)-C(52)	118.53(12)	Si(2)-C(38)-H(38)	107.1
C(48)-C(47)-C(10)	121.87(11)	C(17)-C(18)-C(13)	120.91(12)
C(52)-C(47)-C(10)	119.43(11)	C(17)-C(18)-H(18)	119.5
C(46)-C(41)-C(42)	118.73(12)	C(13)-C(18)-H(18)	119.5
C(46)-C(41)-C(7)	118.00(12)	C(45)-C(46)-C(41)	120.94(13)
\sim / \sim / \sim /	× /		(-)

C(45)-C(46)-H(46)	119.5	H(37B)-C(37)-H(37C)	109.5
C(41)-C(46)-H(46)	119.5	C(4)-C(3)-C(2)	120,19(13)
C(50)-C(49)-C(48)	120.11(13)	C(4)-C(3)-H(3)	119.9
C(50)-C(49)-H(49)	119.9	C(2)-C(3)-H(3)	119.9
C(48)-C(49)-H(49)	119.9	C(44)-C(43)-C(42)	120 43(13)
C(16)-C(15)-C(12)	121 04(12)	C(44)-C(43)-H(43)	119.8
C(16)-C(15)-H(15)	119.5	C(42)-C(43)-H(43)	119.8
C(12)-C(15)-H(15)	119.5	C(24)-C(23)-C(25)	110.63(12)
C(32)-C(34)-H(34A)	109.5	C(24)-C(23)-Si(1)	112.06(10)
C(32)-C(34)-H(34B)	109.5	C(25)-C(23)-Si(1)	113 89(11)
H(34A)-C(34)-H(34B)	109.5	C(24)-C(23)-H(23)	106.6
C(32)-C(34)-H(34C)	109.5	C(25)-C(23)-H(23)	106.6
H(34A)-C(34)-H(34C)	109.5	Si(1)-C(23)-H(23)	106.6
H(34B)-C(34)-H(34C)	109.5	C(44)-C(45)-C(46)	11975(14)
C(38)-C(40)-H(40A)	109.5	C(44)-C(45)-H(45)	120.1
C(38)-C(40)-H(40B)	109.5	C(46)-C(45)-H(45)	120.1
H(40A)-C(40)-H(40B)	109.5	C(38)-C(39)-H(39A)	109.5
C(38)-C(40)-H(40C)	109.5	C(38)-C(39)-H(39R)	109.5
H(40A) - C(40) - H(40C)	109.5	H(39A) - C(39) - H(39B)	109.5
H(40R) - C(40) - H(40C)	109.5	C(38) C(30) H(30C)	109.5
C(51)-C(52)-C(47)	120.81(12)	H(39A)-C(39)-H(39C)	109.5
C(51) - C(52) - H(52)	119.6	H(39R)-C(39)-H(39C)	109.5
C(47)-C(52)-H(52)	119.6	C(23)-C(25)-H(25A)	109.5
C(32)-C(32)-H(32A)	109.5	C(23)-C(25)-H(25R)	109.5
C(32)-C(33)-H(33R)	109.5	H(25A)-C(25)-H(25B)	109.5
H(33A)-C(33)-H(33B)	109.5	C(23)-C(25)-H(25C)	109.5
C(32)-C(33)-H(33C)	109.5	H(25A)-C(25)-H(25C)	109.5
H(33A)-C(33)-H(33C)	109.5	H(25R)-C(25)-H(25C)	109.5
H(33R)-C(33)-H(33C)	109.5	C(43)-C(44)-C(45)	109.5 110 98(13)
C(26)-C(27)-H(27A)	109.5	C(43)-C(44)-H(44)	120.0
C(26)-C(27)-H(27B)	109.5	C(45) - C(44) - H(44)	120.0
H(27A)-C(27)-H(27B)	109.5	C(29)-C(31)-H(31A)	109.5
C(26)-C(27)-H(27C)	109.5	C(29)-C(31)-H(31R)	109.5
H(27A)-C(27)-H(27C)	109.5	H(31A)-C(31)-H(31B)	109.5
H(27R)-C(27)-H(27C)	109.5	C(29)-C(31)-H(31C)	109.5
C(30)-C(29)-C(31)	110 58(15)	H(31A)-C(31)-H(31C)	109.5
C(30)-C(29)-Si(1)	112 64(11)	H(31R)-C(31)-H(31C)	109.5
C(31)-C(29)-Si(1)	111.56(10)	C(35)-C(36)-H(36A)	109.5
C(30)-C(29)-H(29)	107.3	C(35)-C(36)-H(36R)	109.5
C(31)-C(29)-H(29)	107.3	H(36A)-C(36)-H(36B)	109.5
$S_{i}(1) - C(29) - H(29)$	107.3	C(35) - C(36) - H(36C)	109.5
C(26)-C(28)-H(28A)	109.5	H(36A)-C(36)-H(36C)	109.5
C(26)-C(28)-H(28R)	109.5	H(36R)-C(36)-H(36C)	109.5
H(28A) - C(28) - H(28B)	109.5	C(52)-C(51)-C(50)	109.5 120.05(13)
C(26)-C(28)-H(28C)	109.5	C(52)-C(51)-H(51)	120.05(15)
H(28A)-C(28)-H(28C)	109.5	C(50)- $C(51)$ - $H(51)$	120.0
H(28R)-C(28)-H(28C)	109.5	C(23)-C(24)-H(24A)	109 5
C(22)-C(21)-C(14)	169.95(14)	C(23) - C(24) - H(24R)	109.5
C(49)-C(50)-C(51)	119 64(13)	H(24A)-C(24)-H(24B)	109.5
C(49)-C(50)-C(51)	120.2	C(23)-C(24)-H(24C)	109.5
C(51)-C(50)-H(50)	120.2	H(24A) - C(24) - H(24C)	109.5
C(35)-C(37)-H(37A)	109.5	H(24R) - C(24) - H(24C)	109.5
C(35)-C(37)-H(37R)	109.5	C(29)-C(30)-H(30A)	109.5
H(37A)-C(37)-H(37B)	109.5	C(29)-C(30)-H(30R)	109.5
C(35)-C(37)-H(37C)	109.5	H(30A)-C(30)-H(30B)	109.5
H(37A)-C(37)-H(37C)	109.5	C(29)-C(30)-H(30C)	109.5
$(\mathcal{I},\mathcal{I},\mathcal{I},\mathcal{I},\mathcal{I},\mathcal{I},\mathcal{I},\mathcal{I},$			107.0

H(30A)-C(30)-H(30C)	109.5
H(30B)-C(30)-H(30C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U^{12}
$\overline{\mathrm{Si}(1)}$	13(1)	17(1)	13(1)	-2(1)	1(1)	2(1)
Si(2)	11(1)	15(1)	16(1)	-1(1)	1(1)	1(1)
C(12)	13(1)	14(1)	15(1)	-1(1)	2(1)	-1(1)
C(7)	14(1)	14(1)	17(1)	0(1)	2(1)	0(1)
C(10)	12(1)	13(1)	15(1)	0(1)	2(1)	0(1)
C(11)	14(1)	14(1)	15(1)	-1(1)	2(1)	0(1)
C(6)	14(1)	14(1)	16(1)	1(1)	1(1)	0(1)
C(9)	11(1)	13(1)	15(1)	0(1)	3(1)	0(1)
C(8)	12(1)	13(1)	15(1)	-1(1)	2(1)	0(1)
C(48)	17(1)	19(1)	15(1)	0(1)	0(1)	0(1)
C(5)	15(1)	15(1)	16(1)	1(1)	2(1)	0(1)
C(47)	13(1)	15(1)	14(1)	-1(1)	-1(1)	3(1)
C(41)	19(1)	13(1)	15(1)	2(1)	3(1)	2(1)
C(22)	16(1)	17(1)	16(1)	0(1)	0(1)	1(1)
C(19)	18(1)	15(1)	15(1)	1(1)	1(1)	1(1)
C(13)	13(1)	13(1)	16(1)	0(1)	2(1)	-1(1)
C(2)	25(1)	24(1)	15(1)	1(1)	-2(1)	1(1)
C(35)	14(1)	18(1)	20(1)	-2(1)	-1(1)	2(1)
C(17)	18(1)	22(1)	18(1)	3(1)	-2(1)	1(1)
C(42)	19(1)	16(1)	17(1)	1(1)	1(1)	2(1)
C(26)	18(1)	24(1)	19(1)	-6(1)	0(1)	1(1)
C(16)	19(1)	23(1)	14(1)	2(1)	0(1)	-1(1)
C(14)	12(1)	14(1)	14(1)	-1(1)	1(1)	0(1)
C(4)	23(1)	14(1)	20(1)	1(1)	2(1)	2(1)
C(1)	18(1)	18(1)	16(1)	-1(1)	2(1)	1(1)
C(32)	14(1)	23(1)	19(1)	0(1)	-2(1)	1(1)
C(20)	21(1)	18(1)	15(1)	0(1)	1(1)	2(1)
C(38)	15(1)	19(1)	21(1)	0(1)	2(1)	0(1)
C(18)	16(1)	17(1)	18(1)	-1(1)	1(1)	1(1)
C(46)	21(1)	18(1)	20(1)	1(1)	0(1)	0(1)
C(49)	18(1)	28(1)	16(1)	-5(1)	0(1)	5(1)
C(15)	17(1)	20(1)	16(1)	-1(1)	2(1)	0(1)
C(34)	37(1)	33(1)	28(1)	-6(1)	-11(1)	-4(1)
C(40)	31(1)	17(1)	38(1)	2(1)	9(1)	0(1)
C(52)	17(1)	18(1)	19(1)	0(1)	2(1)	-1(1)
C(33)	27(1)	32(1)	22(1)	7(1)	-1(1)	l(1)
C(27)	40(1)	20(1)	32(1)	-5(1)	-9(1)	2(1)
C(29)	19(1)	24(1)	19(1)	0(1)	-3(1)	2(1)
C(28)	26(1)	34(1)	20(1)	-2(1)	-6(1)	-4(1)
C(21)	15(1)	16(1)	14(1)	I(1)	-1(1)	-1(1)
C(50)	24(1)	23(1)	23(1)	-9(1)	-4(1)	6(1)
C(37)	19(1)	22(1)	26(1)	-5(1)	0(1)	6(1)
C(3)	26(1)	20(1)	18(1)	5(1)	I(1)	4(1)
C(43)	$\frac{2}{(1)}$	19(1)	20(1)	4(1)	4(1)	9(1)
C(23)	24(1)	21(1)	16(1)	0(1)	-1(1)	-1(1)
C(43)	$\frac{32(1)}{24(1)}$	10(1) 22(1)	22(1)	-1(1)	-2(1)	-3(1)
C(39)	34(1)	32(1) 25(1)	21(1) 24(1)	3(1) 11(1)	2(1) 0(1)	-9(1) 10(1)
C(23)	40(1)	23(1) 14(1)	34(1) 20(1)	2(1)	$\frac{9(1)}{1(1)}$	10(1)
C(44) C(21)	30(1)	$\frac{14(1)}{20(1)}$	20(1) 22(1)	-2(1)	1(1) 12(1)	9(1)
C(31)	40(1) 22(1)	20(1)	$\frac{22(1)}{22(1)}$	3(1) 2(1)	-13(1)	-0(1)
C(30)	22(1)	20(1)	52(1)	-3(1)	1(1)	-3(1)

Table 9 Anisotropic displacement parameters (Å²x 10³) for 4t. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is The Royal Society of Chemistry 2012

C(51)	22(1)	16(1)	30(1)	-3(1)	-2(1)	-1(1)
C(24)	24(1)	36(1)	22(1)	3(1)	5(1)	-5(1)
C(30)	27(1)	85(2)	37(1)	0(1)	-6(1)	26(1)

	X	у	Z	U(eq)
H(48)	6161	9324	5383	20
H(10)	10047	8289	6084	20
H(35)	3594	11192	5105	20
H(17)	5385	10242	2012	23
H(42)	11729	7245	3923	23
H(26)	13017	7243	1/17	21
H(16)	7107	9550	1549	24
H(10)	10200	7008	1349	22
H(1)	8880	017/	5601	23
H(32)	847	10871	3860	21
H(32)	1075	0770	1700	22
H(18)	5228	10213	2055	22
H(16)	7656	7063	2933	20
H(40)	5545	10350	5878	24
H(49)	8631	8874	2022	23
H(34A)	700	10001	2032	21 49
H(34R)	700 015	0620	3656	49
H(34C)	2211	9029	3030	49
H(34C)	2211	9737	3249	49
$\Pi(40A)$ $\Pi(40D)$	2255	8939	4028	43
$\Pi(40D)$	2555	8620	4201	43
$\Pi(40C)$	2149	0029 10523	4813	45 21
$\Pi(32)$ $\Pi(22A)$	0755	10323	4424	21
$\Pi(33A)$	3233	11040	5170 2511	41
H(33B)	2520	11081	3511	41
$\Pi(33C)$	1097	11504	2005	41
H(2/A)	10881	6464	2095	40
H(2/B)	12517	0203	2132	40
H(2/C)	11030	0003	1394	40
H(29)	13403	7084	28/0	23 40
H(28A)	10814	/010	905	40
$\Pi(20D)$	11264	7039	1047	40
$\Pi(20C)$	10113	/495	1439	40
H(30)	0540	114/5	5055	28
$\Pi(3/\mathbf{A})$	1991	12155	5011	22 22
$\Pi(3/D)$	1139	11405	3011 4516	22 22
$\Pi(3/C)$	1455	71948	4310	33 26
$\Pi(3)$	10043	/180	2505	20
$\Pi(43)$	12224	0150	5505 2157	27
H(23)	13/0/	8980 5052	2157	24
$\Pi(43)$ $\Pi(20A)$	8100 1004	3933 0454	5592	28 42
$\Pi(39A)$	1904	9434	5502	43
H(30C)	2022	10310	5302	43 12
H(39C) H(25A)	2226 12226	701J 0711	J4JJ 1507	43 50
п(23А) ц(25Р)	1200	9/11	1382	50
п(25В)	11302	9300	2044	50 50
$\Pi(23C)$	11343	9040 5402	1433	50 20
П(44) Ц(21 A)	10450	5492 7879	3001	29
$\Pi(31A)$ $\Pi(21D)$	14/45	/8/8	5410 2219	49
п(31В)	13213	8213	3318	49
H(31C)	14529	8512	2978	49

Table 10. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for 4t.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is The Royal Society of Chemistry 2012

H(36A)	3914	12092	4164	37
H(36B)	5162	11607	4407	37
H(36C)	4515	12251	4765	37
H(51)	8141	11555	4924	27
H(24A)	13580	8380	1080	41
H(24B)	14893	8301	1486	41
H(24C)	14473	9078	1249	41
H(30A)	15709	7700	2286	74
H(30B)	15004	6945	2124	74
H(30C)	15792	7031	2701	74

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2012

References

- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
 Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- [3] Müller, P. (2009). Crystallography Reviews, 15, 57-83.