Nanocrystalline diamond AFM tips for chemical force spectroscopy: fabrication and photochemical functionalization

Supporting Information

^s Michael E. Drew,^a Andrew R. Konicek,^b Papot Jaroenapibal,^c Robert W. Carpick^{*d} and Yoko Yamakoshi^{*aef}

^a Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia PA 19104-6323, USA

^b Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104-6396, USA

^c Department of Material Science and Engineering, University of Pennsylvania, 3231 Walnut Street, PA 19104-6272, USA

¹⁰ ^d Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 220 South 33rd Street, Philadelphia PA 19104-6315, USA Fax:+1 215 573 6334; Tel: +1 215 898 4608; E-mail: carpick@seas.upenn.edu

^e Laboratorium für Organische Chemie, ETH-Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland Fax: +41 44 633 1235; Tel: +41 44 633 6420; E-mail: yamakoshi@org.chem.ethz.ch

^f PRESTO, Japan Science and Technology Agency, Japan

Fig. S1 SEM images of a H-NCD film deposited on a Si wafer. (a) Top view; structure is due to the random nanocrystalline grain orientation. (b) Cross-sectional view of a fractured NCD surface.

Fig. S2 Topographic AFM image of H-NCD deposited on Si wafer.

Fig. S3 Bright field and fluorescence optical microscope images of AFM cantilevers after fluorescent labeling. (a) Bright field and (b) fluorescence images of H-NCD cantilevers. (c) Bright field and (d) fluorescence images of UA-NCD cantilevers. (e) Fluorescence image of a UA-NCD cantilever focusing on the plane of the cantilever. (f) Fluorescence image of a UA-NCD cantilever focusing on the tip apex part slightly above the plane of the cantilever. Scale bars are 100 μ m for (a)–(d), 20 μ m for (e), and 10 μ m for (f).