Supporting Information

Layer-by-Layer Assembled Enzyme Multilayers with Adjustable Memory Performance and Low Power Consumption *via* Molecular-Level Control

Hyunhee Baek, Chanwoo Lee, Jeongju Park, Younghoon Kim, Bonkee Koo, Hyunjung Shin, Dyang

Wang and Jinhan Cho*

Figure S1. Film thicknesses of $(PAH/CAT)_{n=5,10 \text{ and } 15}$ multilayers measured from cross-sectional SEM images before and after thermal annealing at 150 °C for 1 hr. The inset indicates cross-sectional SEM image of 15 bilayered films after thermal drying.

Figure S2. Cyclic voltammograms of bare gold electrode and $(PAH/CAT)_{15}$ multilayer-coated onto electrode in pH 7.0 PBS containing 21 mM H₂O₂ with scan rate = 0.05 V·s⁻¹. Redox reaction of PAH/CAT multilayers is occurred from the following reactions: (1) CAT-Fe^{III} + H₂O₂ \rightarrow [CatalaseFe^{IV}=O]^{*} + H₂O, (2) [CatalaseFe^{IV}=O]^{*} + H₂O₂ \rightarrow CatalaseFe^{III} + O₂ + H₂O.

Figure S3. Cycling tests of $(PAH/CAT)_{15}$ multilayers. The electrical measurements were operated at an applied voltage pulse with (a) 300, (b) 500 and (c) 1 µs width in the air environment.

Figure S4. *I-V* characteristics of $(PAH/poly(acrylic acid) (PAA))_{10}$ composed of insulating polyelectrolytes. Top and bottom electrodes were Pt and Ag electrodes.

Figure S5. *I-V* curve of (haemoglobin/PSS)₁₅ multilayers measured from tungsten tip electrode. The electrical measurements were operated at an applied voltage pulse with a 1μ s width in the air environment.