Supplementary Information

Charge transport in photocathodes based on the sensitization of NiO nanorod

Xiao Li Zhang,*^{,a} Zhipan Zhang,^b Fuzhi Huang,^b Peter Bäuerle,^c Udo Bach*^{,b} and Yi-Bing Cheng*^{,b}

^aSchool of Chemical Engineering, The University of New South Wales, Sydney 2052, Australia; ^bDepartment of Materials Engineering, Monash University, Clayton 3800, Australia; ^cInstitute for Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.

Figure S1. Diffuse reflectance spectra of NiO nanorod and commercial NiO nanoparticle.

Figure S2. Nitrogen sorption isotherms of the commercial NiO nanoparticle and the corresponding pore diameter distribution (inset).

	$J_{\rm sc}$ (mA cm ⁻²)	$V_{\rm oc}({\rm mV})$	FF	η (%)
Crystalline NiO nanoparticle (film thickness of 0.9 µm)	1.32	305	0.34	0.14
Commerical NiO nanoparticle (film thickness of 1.55 µm)	3.87	227	0.35	0.3

Table S1. Performance characteristics of p-type DSCs prepared from crystalline NiO nanoparticles (20-200 nm)^[13] and commercial NiO nanoparticles (20-30 nm)^[11].