Supporting Information

Self-Assembly of Well-ordered Whisker-like Manganese Oxide Arrays on Carbon Fiber Paper and Its Application as Electrode Materials for Supercapacitors

Yongsong Luo,^{a,b,g} Jian Jiang,^a Weiwei Zhou,^a Huanping Yang,^a Jingshan Luo,^a Xiaoying Qi,^c Hua

Zhang,^c Denis Y. W. Yu,^b Chang Ming Li^{d,e} and Ting Yu^{*a,b,f}

^a Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore

^b Energy Research Institute at Nanyang Technological University, 639789 Singapore

- ^c School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- ^d Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400700, P. R China
- ^e Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 637371, Singapore
- ^fDepartment of Physics, Faculty of Science, National University of Singapore, 117542 Singapore
- ^g School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China

^{*} To whom correspondence should be addressed: E-mail: <u>yuting@ntu.edu.sg</u>(T. Yu.).

Representive	Specific	Current density		
nanostructures	capacitance	/Scan rate	Remarks	Ref.
MnO ₂ nanowhisker arrays			High specific capacitance,	
on CFP	274.1 F g ⁻¹	$0.1 \mathrm{A g^{-1}}$	excellent cycling performance	Present
			Good electrochemical	
Graphene oxide/MnO ₂	197.2 F g ⁻¹	200 mA g^{-1}	behaviors	22
			Excellent electrochemical	
Graphene/ MnO ₂	310 F g ⁻¹	2 mV s ⁻¹	stablity	26
			Good rate capability, excellent	
Graphene/ MnO ₂ -textile	315 F g^{-1}	2 mV s ⁻¹ cycling performance		27
			Good cycle performance,	
Co ₃ O ₄ @MnO ₂ arrays	480 F g ⁻¹	2.67 Ag^{-1}	remarkable rate capability	46
	660.7 F g^{-1}	10 mV s ⁻¹	Good cycling stability,	
MnO2 nanorod arrays	485.2 F g ⁻¹	3 Ag^{-1}	excellent specific capacitance	51
			Best electrochemical capacitive	
MnO ₂ /carbon nanotubes	162.2 F g ⁻¹	200 mA g^{-1}	performance	52
Carbon nanotube				
sheet/MnO _x	1250 F g ⁻¹	1 A g ⁻¹	High specific capacitance	53

Table S1	Summarization of	of the supercap	pacitor performan	ce of different MnO ₂	nanocomposites
----------	------------------	-----------------	-------------------	----------------------------------	----------------

Fig. S1 XRD pattern of the well-ordered MOWAs and the pristine CFP.

Fig. S2 (a) Optical images of two pieces of samples before and after hydrothermal reaction (Enlarged image of the area marked by a rectangle); (b) Low-magnification SEM image of MOWAs; (c-e) SEM images of pristine CFP at various magnifications; (f) High-magnification SEM image of CFP after hydrothermal reaction.

Fig. S3 (a) SEM image of MOCSs; (b) SEM image of MOCSs with few plumules; (c) SEM image of MOWAs; (d) SEM image of I-MOCSs.

Fig. S4 Nitrogen adsorption-desorption and pore-size distribution isotherm for the obtained MOWAs products.