Electronic Supplementary Information for the Manuscript

Self-Assembly Preparation of Gold Nanoparticles-TiO₂ Nanotube Arrays Binary Hybrid Nanocomposites for Photocatalytic Applications

Fangxing Xiao*

Research Institute of Photocatalysis, State Key Laboratory Breeding Base of Photocatalysis, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, PR China

> *To whom correspondence should be addressed. E-mail Address:fangxing2010@gmail.com

Synthesis of GNP@DDT nanoparticles

Figure S1. Pre-synthesized GNP@DDT nanopaticles. (a) TEM and (b) HRTEM images; (c) mean diameter histogram (counting to tally of 100 particle s) and (d) XRD pattern of GNP@DDT ; the inset image in (b) showing the repr esentative selected area electron d iffraction (SAED) pattern

for GNP@DDT; (e) FTIR spectrum (CH₃: 2954.84 cm⁻¹, 1378.80 cm⁻¹, C-C: 1295.85 cm⁻¹, CH₂: 2920 cm⁻¹, 2850.94 cm⁻¹, 1461.75 cm⁻¹, 720.48 cm⁻¹); (f) High-resolution XPS spectrum of sulfur in GNP@DDT (S 2p, free thiol group -SH: 164 .00 eV, bound thiol group -S -Au: 162.15 eV); (g) UV-vis absorption spectrum and (h) TG result of the as-prepared GNP@DDT.

Table S1. Specific chem ical bond species *versus* binding energy (BE) in term s of blank TNT As and GNP/TNTAs nanocomposites.

Element	TNTAs (eV)	GNP/TNTAs (eV)	Chemical bond species
C 1s A	284.59	284.61	С-С/С-Н
C 1s B	286.27	286.26	C-OH/C-O-C
C 1s C	288.53	288.90	Carboxylate (CO ₂ adsorption/MPA)
O 1s A		529.00	Oxygen vacancies/Low-energy lattice oxygen
O 1s B	529.82	530.16	Lattice oxygen
O 1s C	531.39	531.08	Ti-OH
O 1s D	532.28	532.09	C-OH/C-O-C
O 1s E		533.35	Oxygen species in H ₂ O
Ti 2p _{3/2} 458.55		458.75	Anatase (+4)
Ti 2p _{1/2} 464.25		464.55	Anatase (+4)
Au 4f _{7/2}		83.90	Metallic Au (0)
Au 4f _{5/2}		87.45	Metallic Au (0)
S 2p _{3/2} 163.92		162.08	-SH/-S-Au

Figure S2. EDX spectrum of GNP/TNTAs

Figure S3. High-resolution Au 4f spectra of GNP@DDT and GNP/TNTAs.

Figure S4. (a) Typical panoramic and (b) cross-sectional FE-SEM images of P25 particulate film.

Figure S5. Typical panoramic FE-SEM images of (a) TNTAs and (b) flat anodic TiO_2 layer (FTL) with corresponding enlarged image in the inset.

Figure S6. FE-SEM images of GNP/TNTAs (1.14 wt %) after calcination at 450 °C in air for 2 h.

Figure S7. FE-SEM images of GNP/FTL prepared *via* the same self-assembly method.

Figure S8. (a) FTIR spectrum of GNP/TNT As (1.14 %). (OH stretching vibration peaks from absorbed H₂O and surface hydroxyl groups of T iO₂: 3427.46 cm⁻¹, 1637.19 cm⁻¹, 1413.14 cm⁻¹; C=O stretching vibration peak from MPA: 1700.89 cm⁻¹ partly overlapped by 1637.19 cm⁻¹; Ti-O asymmetric vibration peak: 1 118.99 cm⁻¹; CH₂ vibration peaks from MPA and DDT : 2917.23 cm⁻¹, 2849.15 cm⁻¹), (b) FTIR spectrum of GNP/TNTAs (1.14 %) after calcination at 450 °C in air for 2 h. (OH stretching vibration peaks from absorbed H $_2$ O and surf ace hydroxyl groups of TiO₂: 3443.91 cm⁻¹, 1637.42 cm⁻¹, 1415.01 cm⁻¹; Ti-O asymmetric vibration peak: 1114.99 cm⁻¹)

Figure S9. Comparison results of the photocatalytic degradation of MO for GNP/TNTAs (1.14 wt %) with and without the addi ng of a mmonium oxalate (AO, a scavenger for holes) and isopropanol (ISO, a scavenger for hydroxyl radicals).