Supporting Information

Three Dimensional Koosh Ball Nanoarchitecture with Tunable Magnetic Core, Fluorescent Nanowire Shell and Enhanced Photocatalytic Property

Zheng Ren,¹ Yanbing Guo,¹ Gregory Wrobel,¹ David A. Knecht,²Zhonghua Zhang,¹ Haiyong Gao,¹and Pu-Xian Gao^{1,*}

¹Department of Chemical, Materials and Biomolecular Engineering & Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, USA

²Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125, USA

Email: puxian.gao@ims.uconn.edu

Figure S1. (a)A typical SEM image of Fe_3O_4 particles; (b) An SEM image of $Fe_3O_4@SiO_2$ core-shell structure; (c) Bright field TEM image of $Fe_3O_4@SiO_2$ core-shell structure; (d) Dark field TEM image of $Fe_3O_4@SiO_2$ core-shell structure; (e) XRD pattern of $Fe_3O_4@SiO_2$; (f) An EDX spectrum of $Fe_3O_4@SiO_2$. Scale bars in (a) and (b): 1µm.

Figure S2. An HRTEM image of a) the interface between polycrystalline Fe_3O_4 core and amorphous SiO₂ shell (arrows indicates the Pt impurity); b) embedded Pt within SiO₂ shell. The lattice spacing 0.23nm corresponds to the separation Pt (111) atomic planes.

Figure S3. a) A TEM image of a γ -Fe₂O₃@SiO₂-ZnO koosh ball; b) Electron diffraction pattern corresponding to the γ -Fe₂O₃@SiO₂-ZnO koosh ball in a); c) A typical X-Ray diffraction pattern for γ -Fe₂O₃@SiO₂-ZnO koosh balls; d) An energy dispersive X-ray spectrum of γ -Fe₂O₃@SiO₂-ZnO koosh balls.

Figure S4. The ZnO weight ratios within koosh balls measured by repeated experiments.

Figure S5. Photodegradation of RhB using various magnetic core-shell particles under UV irradiation.

Figure S6. UV-vis-NIR absorption spectra of Rhodamine B solution after different duration of UV irradiation: a) 5 mg γ -Fe₂O₃koosh balls; b) 5 mg bcc-Fe koosh balls; c) 2.5 mg ZnO nanopowder.

Sample	E(X)	E(Y)	E(X ²)	E(Y ²)	E(XY)	LCC	K (min⁻¹)
5 mgγ-Fe2O3 koosh ball	50	0.923827	3750	1.169082	65.72227	0.98329	0.0196
5 mg bcc-Fe koosh ball	50	0.472064	3750	0.330202	35.13595	0.995546	0.00913
2.5 mg ZnO	50	0.32378	3750	0.170626	25.18275	0.99174	0.00651

Figure S7. Computations of linear correlation coefficients and rate constants for different samples, which demonstrates a good linearity between reaction time and the natural logarithm of relative concentration C_0/C . (E: Expectation; statistical average. X: reaction time. Y: $ln(C_0/C)$. LCC: Linear Correlation Coefficient. K: rate constant)

$$LCC = \frac{E(XY) - E(X)E(Y)}{\sqrt{E(X^2) - E^2(X)}\sqrt{E(Y^2) - E^2(Y)}}$$