Electronic Supplementary Information (ESI)

Metal-Organic Framework MIL-100(Fe) for the Adsorption

of Malachite Green from Aqueous Solution

Shu-Hui Huo, and Xiu-Ping Yan*

State Key Laboratory of Medicinal Chemical Biology, and Research Center for

Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071,

China

Preparation and Characterization of Adsorbents. MIL-53 was synthesized according to Férey G. et al.^{S1} Typically, 1300 mg of Al(NO₃)₃·9H₂O and 288 mg of terephthalic acid were mixed with 5 mL of ultrapure water. The obtained mixture was transferred to a Teflon-lined bomb. Then, the Teflon-lined bomb was sealed, placed in an oven, and left at 220 °C for 3 days. The white crystalline solid was thus obtained. After washing with water, the solid was purified and activated upon heating in air at 330 °C for 3 days.

MIL-101 was synthesized according to Férey et al.^{S2} Typically, $Cr(NO_3)_3 \cdot 9H_2O$ (800 mg, 2.0 mmol), terephthalicacid (332 mg, 2.0 mmol) and HF (0.4 mL, 2.0 mmol) were mixed with ultrapure water (9.5 mL). The obtained mixture was transferred to a Teflon-lined bomb. Then, the Teflon-lined bomb was sealed, placed in an oven, and left at 200 °C for 8 h. The green crystalline solid was thus obtained. After thorough washing with DMF, the solid was emerged in ethanol in 1 h, and collected by centrifugation at 10000 rpm for 5 min. The procedure was repeated 3 times to eliminate the unreacted terephthalic acid from MIL-101. The solid was obtained by centrifugation at 10000 rpm for 5 min and then evacuated in vacuum under 150 °C for 12 h.

Figure S1. Effect of the concentration of NaCl and CaCl₂ on the adsorption of MG (100 mg L^{-1}) on MIL-100 (10 mg L^{-1}) . Other conditions: temperature, 30 °C; pH 5.

Figure S2. Plots of $\ln (C_s/C_e)$ vs. C_s at various temperatures.

Figure S3. Plots $\ln K_0$ against 1/T for the adsorption of MG on MIL-100.

Figure S4. Structures of MIL-100, MIL-101 and MIL-53. This figure is a combination of Figure 1 in Ref.S3 with little modification. Copyright 2008 American Chemical Society and with permission.

Figure S5. Effect of zeta potentials of MIL-101(Cr) (0.4 mg L^{-1}) with different pH.

Figure S6. Effects of desorption solution and desorption time on desorption efficiency under ultrasonication.

Figure S7. XRD patterns of MIL-100(Fe) after desorption used different solutions.

Figure S8. (a) Effect of contact time on the MG adsorption and (b) Pseudo-second-order plots to show the re-usability of a spent MIL-100.

Figure S9. SEM images of the prepared MIL-101 and MIL-53.

Figure S10. Adsorption-desorption isotherms (left) and N_2 the pore size distribution (right) of MIL-100 (A) MIL-53 (B), MIL-101 (C) and activated carbon (D).

Figure S11. TGA curves of MIL-53 and MIL-101.

Table S1 Molecular Properties and parameter for the MG								
dye	planarity	molecular size (Å×Å ×Å)	MW(g mol ⁻¹)	solubility (g L ⁻¹)	pKa ^{\$4,\$5}	λ _{UVmax} (nm)		
Malachite green oxalate	planar	13.8×9.9×4.2	927.03	60 (20°C)	10.3	617nm		

Table S2. Characteristic of the Adsorbents

adsorbents	formula	BET surface area $(m^2 g^{-1})$	pore volume (cm ³ g ⁻¹)	pore/chan nel diameter (Å)	open metal sites
MIL-100(Fe)	Fe ₃ O(H ₂ O) ₂ F(BTC) ₂	1626	0.79	25, 29 ^{S6}	Yes
MIL-101(Cr)	Cr ₃ O(H ₂ O) ₂ F(BDC) ₃	2907	1.50	29, 34 ^{S2}	Yes
MIL-53(Al)	Al ^{III} (OH)(BDC)	1002	0.03	8.5 ^{S7}	No
AC	С	600	0.36	-	No

Table S3. Comparison of Adsorption Capacities of Various Adsorbents for MG

adsorbent	$q_{\rm m} ({\rm mg \ g}^{-1})$	temperature (°C)	ref
MIL-100	485	50	this work
MIL-100	266	30	this work
MIL-53	34.9	30	this work
commercial powder activated carbon	149	30	this work
bamboo-based activated carbon	264	30	S 8
cyclodextrin-based material	91.9	25	S4
oil palm trunk fiber	149	30	S9
natural zeolite	24.5	25	S10
chitosan bead	93.6	30	S11
chitosan bead	82.2	50	S11

References

(S1) Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Férey, G. *Chem. Eur. J.* **2004,** *10* (6), 1373-1382.

(S2) Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble,

S.; Margiolaki, I. Science 2005, 309 (5743), 2040-2042.

(S3) Llewellyn, P. L.; Bourrelly, S.; Serre, C.; Vimont, A.; Daturi, M.; Hamon,

L.; De Weireld, G.; Chang, J.-S.; Hong, D.-Y.; Kyu Hwang, Y.; Hwa Jhung, S.; Férey,

G. Langmuir 2008, 24 (14), 7245-7250.

(S4) Crini, G.; Peindy, H. N.; Gimbert, F.; Robert, C. Sep. Purif. Technol. 2007, 53 (1), 97-110.

(S5) Mall, I. D.; Srivastava, V. C.; Agarwal, N. K.; Mishra, I. M. Colloids Surf. A: Physicochem. Eng. Aspects. 2005, 264 (1-3), 17-28.

(S6) Latroche, M.; Surble, S.; Serre, C.; Mellot-Draznieks, C.; Llewellyn, P. L.;

Lee, J. H.; Chang, J. S.; Jhung, S. H.; Férey, G. Angew. Chem. Int. Ed. 2006, 45 (48), 8227-8231.

(S7) Alaerts, L.; Maes, M.; Giebeler, L.; Jacobs, P. A.; Martens, J. A.; Denayer, J.

F. M.; Kirschhock, C. E. A.; De Vos, D. E. J. Am. Chem. Soc. 2008, 130 (43), 14170-14178.

(S8) Hameed, B. H.; El-Khaiary, M. I. J. Hazard. Mater. 2008, 157 (2-3), 344-351.

(S9) Hameed, B. H.; El-Khaiary, M. I. J. Hazard. Mater. 2008, 154 (1-3), 237-244.

(S10) Han, R. P.; Wang, Y.; Sun, Q.; Wang, L. L.; Song, J. Y.; He, X. T.; Dou, C.
C. J. Hazard. Mater. 2010, 175 (1-3), 1056-1061.

(S11) Yurdakoc, K.; Bekci, Z.; Ozveri, C.; Seki, Y. J. Hazard. Mater. 2008, 154

(1-3), 254-261.