Electronic Supplementary Information:

A Conjugated Hyperbranched Polymer Constructed by Carbazole and Tetraphenylethylene Moieties: convenient Synthesis through One-Pot " A_2+B_4 " Suzuki Polymerization, Aggregation-Induced Enhanced Emission, and Application as Explosive Chemsensors and PLED

Wenbo Wu, Shanghui Ye, Lijin Huang, Li Xiao, Yingjie Fu, Qi Huang, Gui Yu, Yunqi Liu,* Jingui Qin, Qianqian Li and Zhen Li*

Scheme S1 Synthesis of carbazole-based monomers S5 and S10.

Fig. S1 The FT-IR spectra of HP-TPE-Cz, LP-TPE-Cz and compound S2.

Fig. S2 TGA thermograms of these two polymers HP-TPE-Cz and LP-TPE-Cz, measured in nitrogen at a heating rate of 10 °C/min.

Fig. S3 UV-Vis spectra of HP-TPE-Cz in THF and THF/water mixtures. $(2.0 \times 10^{-3} \text{ mg/mL})$.

Fig. S4 UV-Vis spectra of LP-TPE-Cz in THF and THF/water mixtures. $(2.0 \times 10^{-3} \text{ mg/mL})$.

Fig. S5 Photoluminescence (PL) spectra of LP-TPE-Cz in THF and THF/water mixtures. ($2.0 \times 10^{-3} \text{ mg/mL } \lambda_{ex} = 350 \text{ nm}$).

Fig. S6 Photoluminescent spectra of the films of **HP-TPE-Cz** before and after annealing at different temperatures for 30 min in air.

Fig. S7 Photoluminescent spectra of the films of LP-TPE-Cz before and after annealing at different temperatures for 30 min in air.

Fig. S8 Cyclic voltammograms of the polymers flims on Pt working electrode.

a

		E_{g}^{opt}	$E_{\text{onset},(\text{ox})}$	$E_{\rm HOMO}$	$E_{\rm LUMO}$		
	no.	$(eV)^a$	(V) vs Fc^b	$(eV)^c$	$(eV)^d$		
	HP-TPE-Cz	2.66	0.60	-5.40	-2.74		
	LP-TPE-Cz	2.63	0.70	-5.50	-2.87		
Band gaps obtained	ed from absorp	tion edg	$e(E_g = 1240/2)$	λonset). ^b	$E_{\rm Fc}=0.48$	8 V vs Ag/A	AgCl. ^c

Table S1. Electrochemical Properties of Hyperbranched Polymers

 $E_{\text{HOMO}} = -(E_{\text{onset}(\text{ox}),\text{FOC}} + 4.8) \text{ eV.}^{d} E_{\text{LUMO}} = (E_{\text{HOMO}} + E_{\text{g}}^{\text{opt}}) \text{ eV.}$

Fig. S9 PL spectra of **LP-TPE-Cz** in THF/water mixture (1:9 v/v 2.0× 10⁻³ mg/mL) containing different amounts of picric acid (PA).

Fig. S10 PA concentration effect on the PL peak intensity of **LP-TPE-Cz** in THF/water mixture (1:9 v/v 2.0×10^{-3} mg/mL), where *I* = peak intensity and *I*₀ = peak intensity at [PA]=0 mg/mL. Inset: fluorescence images of **LP-TPE-Cz** samples adsorbed in the filter papers before (the left one), after (the middle one) being partially dipped into pure toluene and after (the right one) being partially dipped into a toluene solution of PA (80 µg/mL).