SUPPORTING INFORMATION

Dual photorecording on cholesteric azobenzene-containing LC polymer films using helix pitch photo-tuning and holographic grating recording

Alexander Ryabchun^{1*}, Alexey Bobrovsky¹, Anna Sobolewska^{2,3}, Valery Shibaev¹, Joachim Stumpe²

- ¹ Faculty of Chemistry, Moscow State University, Lenin Hills 1, Moscow, 119991 Russia
- ² Fraunhofer Institute for Applied Polymer Research, Geiselbergstr. 69, 14476 Potsdam, Germany
- ³ Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

^{*} ryabchunmsu@gmail.com

Fig. S1. Absorbance spectra of chiral-photochromic dopant **Sorb** (dashed line) and azobenzene fragment of copolymer **PAAzo8** (full line) in dichloromethane solution.

Fig. S2. Changes of the selective light reflection wavelength (λ_{max}) results from different irradiation time with UV light (313 nm, light intensity ~1.2mW/cm²).

Fig. S3. The second-order diffraction efficiency changes during the grating recording process for different recording time: 1 hour (a) and 1 minute (b). In the last case the grating was recorded for a 1 minute till approximately maximum of 1^{st} order diffraction efficiency, after that the Ar^+ laser was off and the system was still monitored by He-Ne laser.

Fig. S4. First-order diffraction efficiency dynamics of uniaxial oriented and non-oriented nematic film of copolymer **PAAzo8**, and of cholesteric mixture **PAAzo8**+**Sorb** (7 wt. %).