Electronic Supplementary Information (ESI) for

Tetraphenylethenyl-Modified Perylene Bisimide: Aggregation-Induced Red Emission, Electrochemical Property and Ordered Microstructures

Qiuli Zhao,^{*a*} Shuang Zhang,^{*a*} Yi Liu,^{*a*} Ju Mei,^{*a*} Sijie Chen,^{*b*} Ping Lu,^{*c*} Anjun Qin,^{*a*} Y uguang Ma,^{*c*} Jing Zhi Sun,^{**a*} and Ben Zhong Tang *^{*a*, *b*}

^a MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Biomedical Macromolecules, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.

^b Department of Chemistry and State K ey Laboratory of Molecular NeuroScience, The H ong K ong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.

^c S tate K ey Laboratory of Supram olecular S tructure and Materials, Jili n Uni versity, Change hun 130012, China

Table of Contents

Scheme S1. Synthetic route to 4-(1,2,2-triphenyvinyl)phenylboronic acid (TPVPBC).	(3)

Figure S1. ¹H NMR (500 MHZ, CDCl ₃) spectra of regioisom ers of 1,6-BTPEP BI (A) and ⁽³⁾ 1,7-BTPEPBI (B).

Figure S2. ¹³C NMR NMR (500 MHZ, CDCl₃) spectra of regioisomers of 1,6-BTPEPBI (A) ⁽⁴⁾ and 1,7-BTPEPBI (B).

Figure S3. (A) Fluoresce nee spe ctra of 1, 7-BTPEPBI in m ethanol/DCM m ixtures with different methanol fractions (f_m , % by volume). Excitation wavelength: 455 nm. (B) Quantum yield (Φ_F) of 1, 7-BTPEPBI in methanol/DCM m ixtures with different f_m values. Φ_F was estimated by using Rhodamine B as s tandard ($\Phi_F = 70\%$ in ethanol). Excitation wavelength: 478 nm. (C) The fl uorescence images for the corresponding solutions were taken under UV illumination. Excitation wavelength = 365 nm. [1,7-BTPEPBI] = 10⁻⁵ M.

Figure S4. (A) Absorption spectra of 1,7-BTPEPBI in water/THF mixtures with d ifferent (5) water contents (V:V). $[1,7-BTPEPBI] = 10^{-5}$ M. (B) F luorescence spectra of 1,7-BTPEPBI in water/THF mixtures with different water fractions (V:V). $[1,7-BTPEPBI] = 10^{-5}$ M. Excitation wavelength = 450 nm.

Figure S5. Absorption s pectra of 1 ,7-BTPEPBI in methanol/chloroform mixtures w ith different methanol contents (V:V). $[1,7-BTPEPBI] = 10^{-5} \text{ M}$

Figure S6. (A) Emission spectra of 1,6-BTPEPBI in hexane/DCM mixtures with different hexane fractions (f_h , by volume). Excitation wavelength = 455 nm. (B) Quantum yield of 1,6-BTPEPBI in hexane/DCM mixtures with different f_h . Excitation wavelength: 478 nm. Inset: Fluorescence images of 1,6-BTPEPBI in DCM ($f_h = 0\%$) and in a hexane/DCM mixture with $f_h = 90\%$. Excitation wavelength = 365 nm. [1,6-BTPEPBI] = 10^{-5} M.

Figure S7. Emission spectra of the solid film of 1,7-BTPEPBI. Excitation at 478 nm. (7)

Figure S8. Fluorescence spectrum for the powder sample of DBrPBI excitation at 478 nm. (7)

Figure S9. Molecular or bital am plitude p lots of HOMO and LUMO ener gy leve ls of ⁽⁸⁾ 1,7-DBrPBI calculated by semi-empirical AM1 method.

Figure S10. SEM images of the morphologies of the ag gregates formed by 1, 7-BTPEPBI (8) molecules in different conditions: (A) and (C) in methanol/DCM mixture with an f_m value of 80% and 90%, respectively . (B) and (D) show the am plified i mages of (A) and (C), respectively. [1,7-BTPEPBI] = 10⁻⁵ M.

Figure S11. A typical SE M image of t he aggregates formed by 1, 7-BTPEPBI molecules in (9) water/THF mixture with an f_w value of 90%. [1,7-BTPEPBI] = 10⁻⁵ M.

Figure S12. (A) A typical SEM im age of the m orphologies of t he a ggregates form ed by (9) 1,7-BTPEPBI molecules in methanol/dioxane with an f_m value of 90%, and (B) represents an amplified image of (A). Concentration of 1,7-BTPEPBI was 10^{-5} M.

Figure S13. Confocal fl uorescence im ages of 1, 7-BTPEPBI microstructures de rived from (10) different conditions. a) Fro m water/THF mixtures with a f_w of 40%; b) from methanol/THF mixtures with a f_m of 90% and c) is t he am plified image of b); d) from methanol/DCM mixtures with a f_m of 70%. In all cases, the concentration of 1,7-BTPEPBI was 10⁻⁵ M.

Figure S14. A typical optical image (A) and a confocal fluorescence image (B) of 1,7-DBrPBI (10) microstructures. For both images, the microstructures were derived from water/THF mixture with f_w of 80% and the concentration of 1,7-DBrPBI was 10^{-5} M.

Figure S15. Typical optical im age (A, B) and a c onfocal fl uorescence image (C, D) of (11) 1,7-BTPEPBI micro- crystals. The images demonstrate that larger specific ratio corresponds to better waveguide performance.

Figure S16. Typical confocal fluorescence (A, B) and optical images (C, D) of 1,7-BTPEPBI (11) micro- crystals. The images demonstrate the microcrystal with higher surface quality exhibits better guiding property.

Figure S17. Typical c onfocal fl uorescence and opti cal im ages of 1,7-BTPEP BI powder (12) sample (A B) and micro-crystals (C, D). The images demonstrate that both needle-like crystals with sharp ends and the powder samples don't have waveguide property.

(6)

i) a) *n*-BuLi, THF, 0 °C, N₂, 0.5h; b) 4-bromobenzophenone, room temperature, 6h;
ii) *p*-toluenesulfonic acid, toluene, reflux, N₂, 4h;
iii) a) n-BuLi, THF, -78°C, N₂, 3h; b) B(OCH₃)₃, -78 °C, N₂, 2h; c) HCl/H₂O, room temperature, N₂, 3h;

Scheme 1. Synthetic route to 4-(1,2,2-triphenyvinyl)phenylboronic acid (TPVPBC).

Fig. S1 ¹H NMR spectra of regioisomers of 1,6-BTPEPBI (A) and 1,7-BTPEPBI (B).

Fig. S2 ¹³C NMR spectra of regioisomers of 1,6-BTPEPBI (A) and 1,7-BTPEPBI (B).

Fig. S3. (A) Fluorescence spect ra of 1,7-BTPEPBI in m ethanol/DCM m ixtures with different methanol fractions (f_m , % by volum e). Excitation wavelength: 455 nm . (B) Quantum yield (Φ_F) of 1,7-BTPEPBI in methanol/DCM mixtures with different f_m values. Φ_F was estimated by us ing Rhodamine B as standard ($\Phi_F = 70\%$ in ethanol). Excitation wavelength: 478 nm. (C) The fluorescence im ages for the corresponding solutions were taken under UV illumination. Excitation wavelength = 365 nm. [1,7-BTPEPBI] =10⁻⁵ M.

Fig. S4. (A) Absorption spectra of 1,7-BTPEPBI in water/THF mixtures with different water contents (V:V). $[1,7-BTPEPBI] = 10^{-5}$ M. (B) Fluorescence spectra of 1,7-BTPEPBI in water/THF mixtures with different water fractions (V:V). $[1,7-BTPEPBI] = 10^{-5}$ M. Excitation wavelength = 450 nm.

Fig. S5. Absorption s pectra of 1,7-BTPEPBI in methanol/dichloromethane m ixtures w ith d ifferent methanol contents (V:V). [1,7-BTPEPBI] =10⁻⁵ M.

Fig. S6. (A) Em ission spectra of 1,6-BTPEPBI in hexane/DCM mixtures with different hexane fractions (f_h , by volume). Excitation wavelength = 455 nm. (B) Q uantum yield of 1,6-BTPEPBI in hexane/DCM mixtures with different f_h . Excitation wavelength: 478 nm. Inset: Fl uorescence images of 1, 6-BTPEPBI in DCM ($f_h = 0\%$) and in a hexane/DCM mixture with $f_h = 90\%$. Exc itation wavelength = 365 nm. [1,6-BTPEPBI] = 10^{-5} M.

Fig. S7. Emission spectra of the solid film of 1,7-BTPEPBI excitation at 478 nm.

Fig. S8. Fluorescence spectrum for the powder sample of DBrPBI excitation at 478 nm.

Fig. S9. M olecular orb ital am plitude plots of H OMO and LU MO energy levels of **1,7-DBrPBI** calculated by semi-empirical AM1 method.

Fig. S10. SEM images of the morphologies of the aggregates formed by 1,7-BTPEPBI molecules in different conditions: (A) and (C) in methanol/DCM mixture with an f_m v alue of 8 0% and 90 %, respectively. (B) and (D) show the amplified images of (A) and (C), respect ively. Concentration of 1,7-BTPEPBI: 10⁻⁵ M.

Fig. S11. A typical SEM i mage of the morphologies of the aggregates form ed by 1,7-BTPEPBI molecules in water/THF mixture with an f_w value of 90%. Concentration of 1,7-BTPEPBI: 10⁻⁵ M.

Fig. S12. (A) A typical SEM image of the m orphologies of the aggregates formed by 1,7-BTPEPBI molecules in methanol/dioxane with an f_m value of 90%, and (B) represents an amplified image of (A). Concentration of 1,7-BTPEPBI was 10^{-5} M.

Fig. S13. Confocal flu orescence im ages of 1, 7-BTPEPBI microstructures derived from different conditions. (A) From water/THF mixtures with a f_w of 40%; (B) from methanol/THF mixtures with a f_m of 90% and (C) is the amplified image of (B); (D) from methanol/DCM mixtures with a f_m of 70%. In all cases, the concentration of 1,7-BTPEPBI was 10⁻⁵ M.

Fig. S14. A typical optical im age (A) and a confocal fl uorescence im age (B) of 1, 7-DBrPBI microstructures. For bot h images, the m icrostructures were derived from water/THF mixture with f_w of 80% and the concentration of 1,7-DBrPBI was 10⁻⁵ M.

Fig. S15. Typical optical image (A, B) and a confocal fluorescence image (C, D) of 1,7-BTPEPBI micro- crystals. The images demonstrate that larger specific ratio corresponds to better waveguide performance.

Fig. S16. Typical confocal fluorescence (A, B) and optical images (C, D) of 1,7- BTPEPBI microcrystals. The images demonstrate the microcrystal with higher surface quality exhibits better guiding property.

Fig. S17. Typical confocal fluorescence and optical images of 1,7-BTPEPBI powder sample (A B) and micro-crystals (C, D). The i mages demonstrate that both needle-like crystals with sharp ends and the powder samples don't have waveguide property.