Rationally designed functional Macroporous materials as new adsorbents for efficient phosphorus adsorption

Jie Yang,^a Pei Yuan,^b Hsin-Yi Chen,^a Jin Zou,^c Zhiguo Yuan^d and Chengzhong Yu^{*a}

a ARC Centre of Excellence for Functional Nanomaterials and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. Fax: (+61) 7-334 63973; E-mail: c.yu@uq.edu.au

b State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Rd., Beijing 102249, China

c Materials Engineering and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD 4072, Australia

d Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, Brisbane, QLD 4072, Australia

Fig. S1. (a) SEM images of MOSF and (b) La₂₀₀MOSF.

Fig. S3. (a) - (c) TEM images of $La_{25}MOSF$, $La_{50}MOSF$, and $La_{100}MOSF$, respectively.

Fig. S4. (a) XPS survey scan of $La_{200}MOSF$; (b) XPS survey scan of $La_{200}MOSF$ after phosphorus adsorption; (c) XPS spectrum of La 3d region of $La_{200}MOSF$; (d) and (f) are XPS spectrums of La 3d region and p 2p region of $La_{200}MOSF$ after phosphorus adsorption, respectively.

Fig. S5. Nitrogen adsorption-desorption isotherms for La_xMOSF materials.). The adsorption isotherms for MOSF, $La_{25}MOSF$, $La_{50}MOSF$ and $La_{100}MOSF$ are shifted by 3500, 2500, 1600 and 700 cm³·g⁻¹ (STP), respectively.

Fig. S6 The phosphate uptake capacity of $La_{200}MOSF$ as a function of the initial pH value of phosphate solutions. The pH value is adjusted using 0.1 M HCl and NaOH. The initial phosphate concentration is 50 mg/L and the adsorbent dosage is 50 mg/50 mL.

Fig. S7 The pH value change during the adsorption process of $La_{200}MOSF$ as a function of reaction time.

Fig. S8. The effect of coexisting anions on adsorption capacity of $La_{200}MOSF$. Sorbent dosage: 0.050 g/50 mL; phosphorus concentration: 50 mg/L; foreign anions concentrations: 400 mg/L; temperature: 25°C; stirring speed 150 r/min.

Fig. S9. The wide-angle XRD patterns of (a-d) La_xMOSF materials after phosphorus adsorption (x=25, 50, 100 and 200, respectively).

Atomic percentage (%)	La	Si
1	7.86	25.17
2	4.32	26.48
3	7.04	32.23
4	4.92	23.95
5	6.08	27.98
6	4.90	23.03
7	6.37	28.12
8	4.49	23.81
9	7.85	27.85
10	9.54	44.27
average	6.34	28.29

Table S1. The atomic percentage of La and Si of La₂₀₀MOSF

samples		Langmuir modal			Freundlich modal		
	$^{\dagger}R^{2}$	[†] b (L/mmol)	[†] Q _{max}	P/La	$^{\P}R^{2}$	[¶] K (mmol ⁽¹⁻	¶n
			(mmol/g)			ⁿ⁾ •L ⁿ •g ⁻¹)	
La ₂₅ MOSF	0.997	27.531	0.551	1.043	0.994	0.554	21.46
La₅₀MOSF	0.838	109.616	0.971	0.099	0.817	1.010	8.213
La ₁₀₀ MOSF	0.977	9.450	1.874	1.117	0.974	1.751	4.681
La ₂₀₀ MOSF	0.973	4.090	2.272	0.862	0.933	1.831	3.177

Table S2. Langmuir and Freundlich parameters for phosphate adsorption on each sample.

⁺ Langmuir parameters: R^2 is the correlation coefficients, Q_{max} is the maximum adsorption amount (mmol/g), and b is Langmuir constant (L/mmol). ⁺ Freundlich paremeters: R^2 is the correlation coefficients, K (mmol⁽¹⁻ⁿ⁾ Lⁿ g⁻¹) and n

are empirical constants.

Macro elements	mg/L	Trace elements	mg/L
Na-acetate	42.85	FeSO ₄ .7H ₂ O	2.50
KH ₂ PO ₄	14	$ZnCl_2$	0.06
K ₂ HPO ₄	13	MnCl ₂ .4H ₂ O	0.06
NH ₄ Cl	191	NaMoO ₄ .2H ₂ O	0.19
Starch	81	CoCl ₂ .6H ₂ O	0.13
Milk powder	110	NiCl ₂ .6H ₂ O	0.04
Sucrose	80	$CuSO_4$	0.06
Peptone	16	H_3BO_3	0.06
Yeast extract	38	MgCl ₂	0.19
NaHCO ₃	600	CaCl ₂	0.44

 Table S3. Composition of synthetic wastewater.