## Supporting Information

# Incorporation of Pyrrole to Oligothiophene-Based Quinoids Endcapped with Dicyanomethylene: a New Class of Solution Processible n-Channel Organic Semiconductors for Air-Stable Organic Field-Effect Transistors

Yali Qiao,<sup>a</sup> Jing Zhang,<sup>ab</sup> Wei Xu\*<sup>a</sup> and Daoben Zhu\*<sup>a</sup>

<sup>a</sup> Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China <sup>b</sup> Graduate School of Chinese Academy of Sciences, Beijing 100049, P. R. China

### **Table of the Contents**

| §1. TGA data for derivatives <b>3</b> a-c                        | .S2         |
|------------------------------------------------------------------|-------------|
| §2. DSC data for derivatives <b>3</b> a-c                        | .S3         |
| §3. Data of X-ray crystallographic analysis                      | .S4         |
| §4. UV-vis spectra of thin films                                 |             |
| §5. Structural isomers in solution state                         | . <b>S6</b> |
| §6. Copies of <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra | .S9         |
| §7. References                                                   | .S15        |

1. TGA data for derivatives 3a-c



Fig. S1 Thermal gravimetric analysis (TGA) of compounds **3a-c** performed at a heating rate of 10 °C min<sup>-1</sup> under a N<sub>2</sub> atmosphere with runs recorded from room temperature to 550 °C.

2. DSC data for derivatives 3a-c



**Fig. S2** Differential scanning calorimetry (DSC) curves of powder of compounds **3a-c** performed under a  $N_2$  atmosphere. Upward peaks indicate exothermic processes, while downward peaks indicate endothermic processes. Scan rate: 10 °C min<sup>-1</sup>.

#### 3. Data of X-ray crystallographic analysis

| Table S1. Crystal data and structure refinemen |                                                               |
|------------------------------------------------|---------------------------------------------------------------|
| Empirical formula                              | C <sub>26</sub> H <sub>23</sub> N <sub>5</sub> S <sub>2</sub> |
| Formula weight                                 | 469.61                                                        |
| T/K                                            | 173(2)                                                        |
| Wavelength, Å                                  | 0.71073                                                       |
| Crystal system                                 | Triclinic                                                     |
| space group                                    | P-1                                                           |
| a, Å                                           | 10.463(2)                                                     |
| b, Å                                           | 11.737(2)                                                     |
| c, Å                                           | 12.856(3)                                                     |
| a, deg                                         | 91.16(3)                                                      |
| β, deg                                         | 105.66(3)                                                     |
| γ, deg                                         | 114.76(3)                                                     |
| Volume, Å <sup>3</sup>                         | 1364.3(5)                                                     |
| Ζ                                              | 2                                                             |
| Calculated density, Mg/m <sup>3</sup>          | 1.143                                                         |
| Absorption coefficient, mm <sup>-1</sup>       | 0.216                                                         |
| F(000)                                         | 492                                                           |
| Crystal size, mm                               | 0.42 	imes 0.28 	imes 0.24                                    |
| $\theta$ range, deg                            | 1.66 to 27.46                                                 |
| Limiting indices                               | -13<=h<=13, -15<=k<=15,                                       |
|                                                | -16<=l<=16                                                    |
| Reflections collected / unique                 | 15139 / 6219 [R(int) = 0.0447]                                |
| Absorption correction                          | Semi-empirical from equivalents                               |
| Refinement method                              | Full-matrix least-squares on F <sup>2</sup>                   |
| Data / restraints / parameters                 | 6219 / 0 / 298                                                |
| Goodness-of-fit on F <sup>2</sup>              | 1.059                                                         |
| Final R indices $[I \ge 2\sigma(I)]$           | $R_1 = 0.0676, wR_2 = 0.1911$                                 |
| R indices (all data)                           | $R_1 = 0.0736$ , $wR_2 = 0.1971$                              |
| Largest diff. peak and hole, e.A <sup>-3</sup> | 1.523 and -0.480                                              |

Table S1. Crystal data and structure refinement for compound 3b.

#### 4. UV-vis spectra of thin films



**Fig. S3** UV-vis absorption spectra of thin films of compounds **3a-c** spin-coated on quartz substrates and annealed at different temperatures.

#### 5. Structural isomers in solution state

Generally, for oligothiophene-based quinoidal substituted with dicynomethylene, the E/Z isomerism can exist in the thienoquinoidal core parts. Similarly, for our results, we found there are some small <sup>1</sup>H NMR signals appearing in the aryl portion, which are seemingly signals for inpurity, taking compound 3b as a example, see Fig. S4. However, because the compound was purified by repeated recrystallization and its purity was confirmed by elemental analysis (less than 0.3%), we think there might be some configuration isomers (i.e. cis-cis, cis-trans, trans-trans in terms of the double bonds between thiophene and pyrrole rings, see Fig. S5) co-exisiting for 3b in the solution, although data of X-ray crystallographic analysis for 3b was successfully obtained and the structure for such pyrrole-containing quinoid displays one configuration (cis-cis) in the solid state. In order to confirm our consideration about the isomerization phenomenon, NOESY spectrum analysis was carried out: clear correlated peaks between thiophene  $\beta$ -protons H<sub>b(b')</sub> and methylene protons H<sub>d(d')</sub> on the first carbon in the alkyl substituent were observed as displayed in Fig. 6 and 7, demonstrating that there are probably two kinds of isomers (eg. cis-cis and cis-trans) at least co-existing as an equilibrium mixture in the solution.



**Fig. S4** The <sup>1</sup>H NMR spectrum (600 MHz,  $CD_2Cl_2$ ) at 298 K for **3b**.



**Fig. S5** (a) Three isomers for a terthienoquinoid as reported by Takimiya's group<sup>1</sup>, and (b) three possible isomers for **3b** in solution.



**Fig. S6** The <sup>1</sup>H NMR spectrum (600 MHz,  $CD_2Cl_2$ ) at 213 K for **3b**. *Note*: Isomer with larger proportion is called Part A and the one with much smaller proportion is called Part B; and the assignment of some key hydrogen atoms are indicated.



**Fig. S7** The NOESY spectrum (600 MHz,  $CD_2Cl_2$ ) at 213 K for **3b**. *Note*: Correlation peaks A<sub>1</sub> and A<sub>2</sub> indicate Part A exists as a *cis-cis* configuration; Correlation peaks B<sub>1</sub> and B<sub>2</sub> indicate Part B more possibly exists as a *cis-trans* configuration.



# 6. Copies of <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra









Fig. S15<sup>13</sup>C NMR spectrum of 3a.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2012









S14

#### 7. References

S1. S. Handa, E. Miyazaki, K. Takimiya and Y. Kunugi, J. Am. Chem. Soc., 2007, 129, 11684.