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Materials synthesis and characterization 

All chemicals used in this study are of analytical grade, and used without further 

purification. Natural graphite powder (Alfa Aesar; with a particle size of ~70 μm and 

a purity of 99.999 %) was oxidized using a modified Staudenmaier method to produce 

graphite oxide (GO). Briefly, the graphite (5 g) was continuously stirred in a mixed 

solution of sulfuric acid (88 mL), nitric acid (45 mL), and potassium chlorate (55 g) 

for approximately 100 hours. Afterwards, the resulting GO was rinsed with 5% HCl 

aqueous solution and then repeatedly washed with deionized water until the pH of the 

filtrate was neutral. The product was dried and pulverized. Finally, GO was rapidly 

heated (~30 °C/min.) to 1050 °C in an inert Ar atmosphere and cooled in the furnace. 

After the thermal exfoliation and reduction, graphene was produced. 

MnO2/graphene nanocomposites were synthesized using an ethanol-assisted 

graphene-sacrifice reduction method. KMnO4 was used as the precursor, which was 

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry
This journal is © The Royal Society of Chemistry 2012

mailto:jkchang@ncu.edu.tw


reduced by graphene and ethanol to form MnO2. In one pot, 0.1 M KMnO4 was 

dissolved in 0.2 M KOH aqueous solution (20 mL). In the other pot, graphene was 

dispersed (with ultrasonication) in ethanol and water mixed solution (20 mL/10 mL). 

After combination of the two pots, a vigorously stir continued for 3 h to ensure the 

completeness of the reduction reaction. The resulting precipitates were separated by 

centrifugation followed by thoroughly washing with deionized water. All the samples 

were dried overnight at 80 °C prior to analyses. A plain MnO2 sample (without 

graphene incorporation) was also prepared for comparison. 

Microstructure of the samples was examined using scanning electron microscopy 

(SEM, JEOL JSM-7000F) and transmission electron microscopy (TEM, FEI Tecnai 

F20 G2). The crystallinity was determined with an X-ray diffractometer (XRD, 

Rigaku MiniFlex II) with a Cu target. 

Electrochemical characterizations were performed using cyclic voltammetry (CV) 

and chronopotentiometry (CP) in 3 M KCl aqueous solution at 25 °C. The applied 

potential and current were regulated with a potentiostat (Autolab, 302N). The 

synthesized powder was mixed with isopropyl alcohol and Nafion and then pasted on 

a glassy carbon disc to prepare the working electrode. A platinum wire and an 

Ag/AgCl (in 3 M KCl solution) electrode were used as the reference and counter 

electrodes, respectively. 
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Fig. SI1. Raman spectrum of the graphene prepared. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. SI2. AFM analysis of the graphene prepared. 
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Fig. SI3. X-ray diffraction patterns of pristine graphene (curve a), plain MnO2 (curve 

b), and the MnO2/GNS-90/10 nanocomposite (curve c). 
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Fig. SI4. Electron diffraction pattern of the MnO2/GNS-90/10 nanocomposite. 
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Fig. SI5. TEM image of the MnO2/GNS-90/10 nanocomposite. 
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Fig. SI6. Galvanic charge/discharge curves measured on a two-electrode configuration 

at various applied current densities. 
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