ELECTRONIC SUPPLEMENTARY INFORMATION

Conjugated Polyelectrolyte Complexes with Single-Walled Carbon Nanotubes for Amperometric Detection of Glucose with Inherent Anti-Interference Properties

Xin Pang^a, Patigul Imin^a, Igor Zhitomirsky^{*b}, Alex Adronov^{*a}

^aDepartment of Chemistry and Chemical Biology, McMaster University, Hamilton,

Ontario, Canada L8S 4M1

^bDepartment of Materials Science and Engineering, McMaster University, Hamilton,

Ontario, Canada L8S 4L7

Figure S1. Amperometric responses of (a) GC/PDAOT-SWNT/GOx, (b) GC/P3TOPS-SWNT/GOx, and (c) GC/aPPE-SWNT/GOx biosensors to sequential increases of 5 mM glucose, 0.3 mM UA, and 0.1 mM AA. The GC/PDAOT-SWNT/GOx, GC/P3TOPS-SWNT/GOx, and GC/aPPE-SWNT/GOx biosensors were prepared from 6 g·L⁻¹ PDAOT aqueous solution containing 2 g·L⁻¹ SWNTs and 5 g·L⁻¹ GOx, 6 g·L⁻¹ P3TOPS aqueous solution containing 2 g·L⁻¹ SWNTs and 5 g·L⁻¹ GOx, and 6 g·L⁻¹ aPPE aqueous solution containing 6 g·L⁻¹ SWNTs and 5 g·L⁻¹ GOx, respectively.