Supporting Information

for

Intramolecular Excimer Emission as Blue Light Source in Fluorescent Organic Light Emitting Diodes: A Promising Molecular Design

Damien Thirion,^a Maxime Romain,^a Joëlle Rault-Berthelot,^{a*} Cyril Poriel^{a*}

a. Université de Rennes 1-UMR CNRS 6226 "Sciences Chimiques de Rennes"-MaCSE group. Bat 10C, Campus de Beaulieu - 35042 Rennes cedex France.

Email: cyril.poriel@univ-rennes1.fr, joelle.rault-berthelot@univ-rennes1.fr

TABLE OF CONTENTS

Electrochemical studies	3
Organic Light Emitting Diodes	5
Copy of NMR spectra	9

Electrochemical studies

CV recorded in CH₂Cl₂-[NBu₄][PF₆] 0.2 M in the presence 2×10^{-3} M of **1**. Platinum working electrode (platinum disk diameter 1mm). Sweep-rate : 100 mV/s.

CV recorded in CH₂Cl₂-[NBu₄][PF₆] 0.2 M in the presence 2×10^{-3} M of **2**. Platinum working electrode (platinum disk diameter 1mm). Sweep-rate : 100 mV/s.

CV recorded in CH₂Cl₂-[NBu₄][PF₆] 0.2 M in the presence 10^{-3} M of **3**. Platinum working electrode (platinum disk diameter 1mm). Sweep-rate : 100 mV/s.

Organic Light Emitting Diodes

Current density-Voltage-Luminance characteristics of ITO/PEDOT/ ${\bf 1}$ (50 nm) /Ca device. (Device A)

Current density-Voltage-Luminance characteristics of : ITO/PEDOT/ 2 (45 nm) /Ca device. (Device B)

Current density-Voltage-Luminance characteristics of : ITO/PEDOT/ $\mathbf{3}$ (40 nm) /Ca device. (Device A)

Current density-Voltage-Luminance characteristics of : ITO/PEDOT/NPB/ 3 (40 nm) /Ca device (Device B)

Luminous and energetic efficiencies have been respectively calculated, from the I-V-L characteristics, as follow:

 $\mathbf{Re} = (\mathbf{L} \times \mathbf{10}^{-4}) / \mathbf{J}$

With

Re = Luminous efficiency in Cd.A⁻¹ L = Luminance in Cd.m⁻² The surface of the device is 0.1 cm^2 J = current density (A.cm⁻²)

 $\mathbf{R}\mathbf{w} = \left(\mathbf{R}\mathbf{e} \times \boldsymbol{\pi}\right) / \mathbf{V}$

With

 $Rw = Energetic efficiency in Lm.W^{-1}$ Re = Luminous efficiency in Cd.A⁻¹ V = Voltage in V

1 as EML

♦: Device B (0.25; 0.27)

2 as EML

- •: Device A (0.19;0.19)
- •: Device B (0.19;0.18)

3 as EML

* Device A (0.23/0.24)

* Device B (0.27/0.34)

^{♦:} Device A (0.24;0.24)

Copy of NMR spectra

Compound 3 (CD_2Cl_2)

