Electronic Supplementary Information

Highly efficient visible-light-driven photocatalytic hydrogen production from water using Cd_{0.5}Zn_{0.5}S/TNTs (titanate nanotubes) nanocomposites without noble metals

Yubin Chen, Liejin Guo*

Table S1 The annual production and price of different metallic elements.

Element	Cu	Nb	V	Та	W	Ni	Ti	Ga	In
Annual	15,000,000	15,000	7,000	840	45,100	1,300,00	00 <mark>99,000</mark>	30	75
production (1	t)								
Price	3.3	43	179	60	18	8.5	7.7	229	297
(USD/lb [*])									
Element	Zn	Cd	Bi	Ru	Rh	Pd	Ag	Pt	Au
Annual	12,500,000	23,000	6,000	12	4.5	24	23,000	30	800
production (1	t)								
Price	1.2	3.1	6.1	6,080	109,600	9,664	512	24,456	26,496
(USD/lb [*])									

*1 lb (pound) = 453.6 g

International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi 710049, P. R. China. Fax: +86-29-82669033; Phone: +86-29-82663895; Email: lj-guo@mail.xjtu.edu.cn.

Photocatalyst	Apparent quantum yield (AQY)			
$Cd_{1-x}Zn_xS$ with nano-twin structure ¹	43% at 425 nm			
$ZnS-In_2S_3-CuS^2$	22.6% at 420 nm			
NiS/CdS ³	51.3% at 420 nm			
$Zn_xCd_{1-x}S^4$	30.4% at 420 nm			
CuS/ZnS ⁵	20% at 420 nm			
MWCNTs/ZnIn ₂ S ₄ ⁶	23.3% at 420 nm			

Table S2 High efficiencies reported for hydrogen production using noble-metal-free photocatalysts

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is The Royal Society of Chemistry 2012

Fig. 1S Schematic diagram of the band positions of Cd_{0.5}Zn_{0.5}S, CdS and TNTs.

Fig. 2S Influence of the concentration of sacrificial reagents on the pH of the reaction solution. The abscissa denotes the multiple of used sacrificial reagent concentration compared to 0.25 M $Na_2SO_3/0.35$ M Na_2S . For example, when the abscissa was 2.0, 0.50 M $Na_2SO_3/0.70$ M Na_2S were used.

References

- 1 M. Liu, L. Wang, G. Q. Lu, X. Yao and L. Guo, *Energy Environ. Sci.*, 2011, 4, 1372.
- 2 Y. Li, G. Chen, Q. Wang, X. Wang, A. Zhou and Z. Shen, Adv. Funct. Mater., 2010, 20, 3390.
- 3 W. Zhang, Y. Wang, Z. Wang, Z. Zhong and R. Xu, Chem. Commun., 2010, 46, 7631.
- 4 Y. Wang, J. Wu, J. Zheng and R. Xu, Catal. Sci. Technol., 2011, 1, 940.
- 5 J. Zhang, J. Yu, Y. Zhang, Q. Li and J. R. Gong, Nano Lett., 2011, 11, 4774.
- 6 B. Chai, T. Peng, P. Zeng and X. Zhang, *Dalton Trans.*, 2012, 41, 1179.