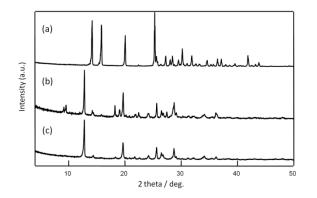

Supporting Information


Reversible iodine adsorption by alkali-TCNQ salts with associated changes in physical properties

Akira Funabiki,^a Tomoyuki Mochida,^{*a} Kazuyuki Takahashi,^a Hatsumi Mori,^b Takahiro Sakurai,^c Hitoshi Ohta,^d Mikio Uruichi^e

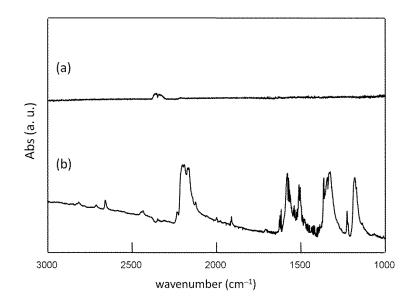

^aDepartment of Chemistry, Graduate School of Science, Kobe University, ^bInstitute for Solid State Physics, The University of Tokyo, ^cCenter for Supports to Research and Education Activities, Kobe University, ^dMolecular Photoscience Research Center, Kobe University, ^eInstitute for Molecular Science

Fig. S1. Changes of the powder XRD patterns of M(TCNQ) caused by reversible iodine absorption for the salts: (A) Li and (B) K.

Fig. S2. Powder XRD patterns of (a) K(TCNQ) prepared by solution reactions, (b) an over-doped salt obtained by storing K(TCNQ) in an iodine atmosphere for one month, which contains a small portion of K(TCNQ)I, and (c) the over-doped salt obtained by stirring a dispersion of K(TCNQ) in a hexane solution of iodine for two days.

Fig. S3. IR spectra of (a) Na(TCNQ)I prepared by solid-state reactions and (b) Na(TCNQ) obtained by annealing Na(TCNQ)I.

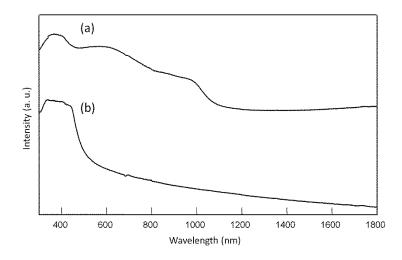


Fig. S4. Solid-state UV-vis-NIR absorption spectra of (a) $Rb_2(TCNQ)_3I_2$ prepared by solid-state reaction and (b) TCNQ.

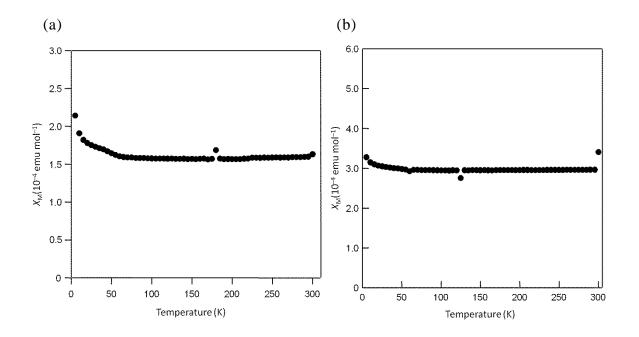


Fig. S5. Temperature dependence of the magnetic susceptibilities of (a) $Na(TCNQ)I_{6.0}$ and (b) $K(TCNQ)I_{5.8}$ prepared by liquid phase reactions.

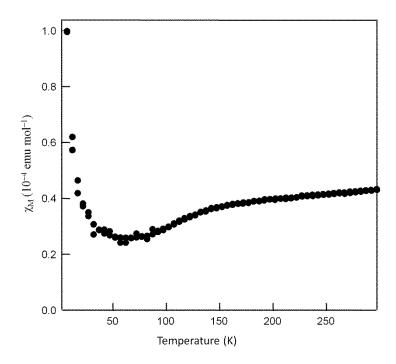


Fig. S6. Temperature dependence of the magnetic susceptibility of $Rb_2(TCNQ)_3I_2$ prepared by solid-state reaction.