Facile Preparation of Carbon-Supported PtNi Hollow Nanoparticles with High Electrochemical Performance

Sung Jong Bae, a, Long Jong Yoo, Yuntaek Lim, Sojeong Kim, Yirang Lim, Junghun Choi, Kee Suk Nahm, Seung Jun Hwang, Tae-Hoon Lim, Soo-Kil Kim, and Pil Kim

*Corresponding authors.

^aDepartment of Hydrogen and Fuel Cell Engineering, Chonbuk National University, JeonJu, Jeonbuk, 561-756, Republic of Korea.

^bFuel Cell Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seoul 136-791, Republic of Korea.

^cSchool of Semiconductor and Chemical Engineering, Chonbuk National University, JeonJu, Jeonbuk, 561-756, Republic of Korea.

^dDepartment of Integrative Engineering, Chung-Ang University, Seoul, 156-756, Republic of Korea.

¹These authors contributed equally to this work

E-mail: kimpil1@chonbuk.ac.kr; sookilkim@cau.ac.kr

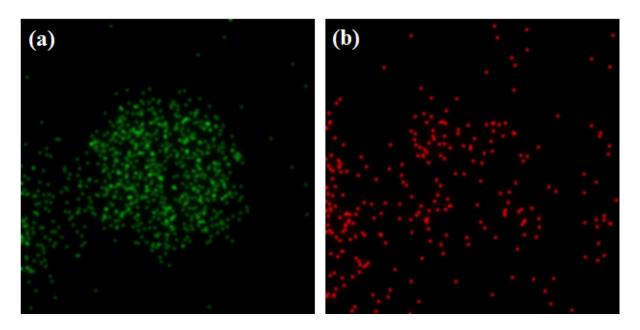
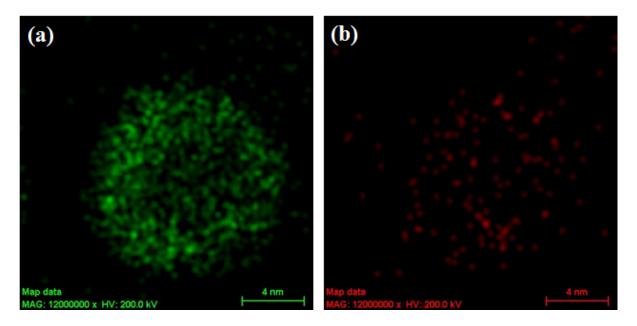
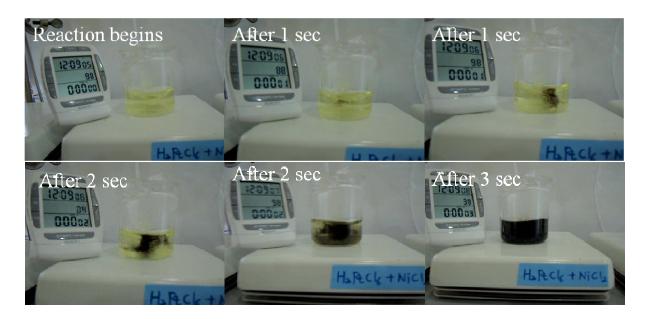


Fig. S1 Elemental mapping of (a) Pt and (b) Ni for PtNi-H/C.

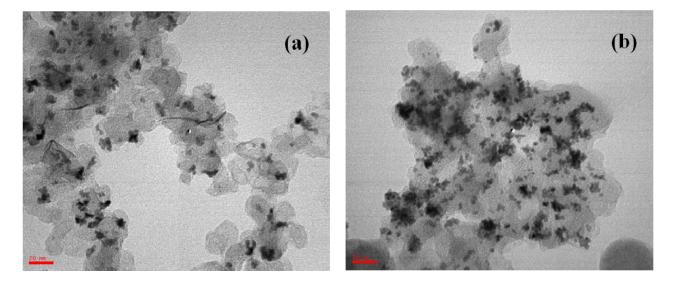

Fig. S2 Elemental mapping of (a) Pt and (b) Ni for PtNi-H-A/C.

Fig. S3 Photographs of precursor solution containing H₂PtCl₆ and NiCl₂ during the reduction using NaBH₄ solution (320 mM). Each precursor (1.6 mmol) was dissolved in triply distilled water.

Fig. S4 Photographs of precursor solution containing Pt(NH₃)₄Cl₂ and NiCl₂ during the reduction using NaBH₄ solution (320 mM). Each precursor (1.6 mmol) was dissolved in triply distilled water.

Fig. S5 TEM images of PtNi-S/C and PtNi-S-A/C. The PtNi-S/C and PtNi-S-A/C were prepared using H₂PtCl₆ and NiCl₂ precursors through the same procedure as that used for PtNi-H/C and PtNi-H-A/C, respectively. In constrast to PtNi-H/C and PtNi-H-A/C, these catalysts show only solid nanoparticles supported on the carbon support.

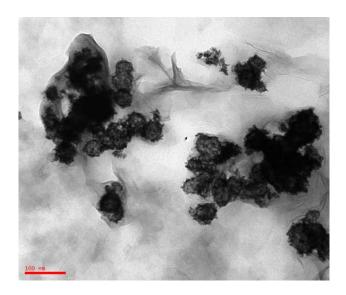
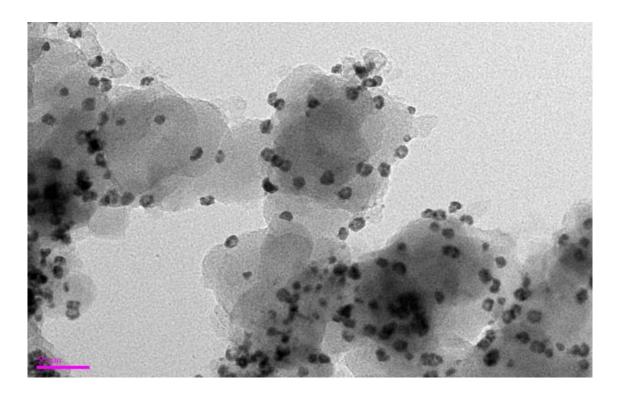
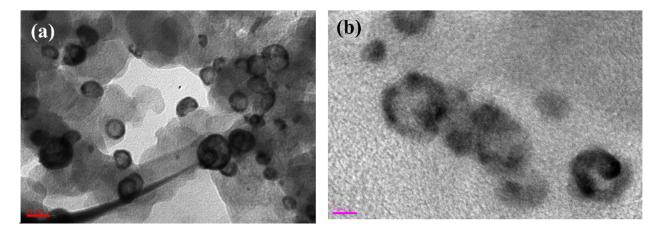




Fig. S6 TEM image of PtNi samples prepared using $Pt(NH_3)_4Cl_2$ and $NiCl_2$ precursor without carbon support.

Fig. S7 TEM image of carbon-supported PtNi hollow nanoparticles prepared using Bis(ethylenediammine)platinum (II) chloride and NiCl₂ precursors. The atomic ratio of Pt to Ni in the precursor solution was 1.0. The preparation procedure was the same as that in the case of PtNi-H/C.

Fig. S8 TEM image of carbon-supported PtM (M=Co or Cu) hollow nanoparticles prepared using (a) $Pt(NH_3)_4Cl_2$ and $CoCl_2$ and (b) $Pt(NH_3)_4Cl_2$ and $CuCl_2$ precursors. The atomic ratio of Pt to M in the precursor solution was 1.0. The preparation procedure was the same as that in the case of PtNi-H/C.