Supporting information

Continuous Hydrothermal Synthesis of 3,4-Dihydroxyhydroxycinnamic Acid-Modified Magnetite Nanoparticles with Stealth-Functionality against Immunological Response

Takanari Togashi,¹ Seiichi Takami,² Kazuyoshi Kawakami,³ Hideki Yamamoto,³ Takashi Naka,⁴ Koichi Sato,⁴ Keietsu Abe,⁵ Tadafumi Adschiri¹

1. Advanced Institute for Material Research (WPI-AIMR), Tohoku University 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan,

2. Institute for Multidisciplinary for Advanced Material, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan

3. Innovative Materials Engineering Laboratory, National Institute for Material Science, Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan,

4. Department of Medical Microbiology and Immunology, Tohoku University, 2-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi, 985-8575, Japan

5. New Industry Creation Hatchery Centre, Tohoku University, 6-6-10 Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan

Stability of dispersed solutions of the synthesized Fe₃O₄ nanoparticles

Fig. S1 shows photographs of 1 mg/ml of synthesized Fe₃O₄ nanoparticles dispersed in water and in 0.9% NaCl aqueous solution (Fig. S1). Both solutions were well dispersed. Precipitation and aggregation could not be confirmed after one month.

Figure S1. Photographs of magnetite nanoparticles synthesized at 300 °C: (a) Dispersed in water solution; (b) Dispersed in 0.9% NaCl solution

Evaluation coverage of DHCA on the Fe3O4 nanoparticle

The amount of DHCA molecules attached on Fe_3O_4 was evaluated with thermogravimetric measurement (**Fig. S2**) that were performed on a TGDTA T8120 (Rigaku, Japan). All measurements were taken under a constant argon flow of 30 mL/min. The temperature was first kept for 30 min at 105 °C to remove most of the water and then increased to 800 °C at a rate of 10 °C/min. The initial weight of each sample was about 5 mg. All the reported TGA curves were normalized with respect to the weight at 105 °C to ensure that only the solid fraction was measured.

Fig. S2 shows the thermogravimetric measurement data of the synthesized Fe_3O_4 nanoparticles. Significant decrease of the weight was observed for 280 °C, which is considered as desorption and decomposition of DHCA, according to previous report.^[1] In addition, the coverage of DHCA on the all synthesized Fe_3O_4 was about 4 molecules/nm² and was not change drastically with changing the reaction temperature (Table S1).

Figure S2. Thermogravimetric measurement of synthesized Fe_3O_4 at various temperatures: (a) 230 °C; (b) 260 °C; (c) 300 °C; (d) 360 °C

		-		•
Temperature (°C)	Diameter (nm)	Average mass contribution	Surface area	Coverage ratio
		of DHCA (%)	(nm ² /particle)	(DHCA/nm ²)
230	10.5	13.4	346	4.3
260	13.2	9.8	547	4.1
300	16.2	7.9	824	3.9
350	17.6	7.7	972	4.2

Table S1. Evaluated coverage of DHCA synthesized Fe₃O₄ at various temperatures.

[1]A. L. Petrou, M. V. Koromantzou, Transition. Met. Chem., 1991, 16, 48-52