Electronic Supplementary Information

Preparation and characterization of Fe-doped TiO₂ nanoparticles as a support for a high performance CO oxidation catalyst

Sungju Yu, Hyeong Jin Yun, David Minzae Lee, and Jongheop Yi

World Class University (WCU) program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 151-742, Republic of Korea

Sample	BET Surface Area (m ² /g)
TiO ₂	88.70
$Ti_{0.96}Fe_{0.04}O_2$	81.77
$Ti_{0.94}Fe_{0.06}O_2$	78.49
$Ti_{0.92}Fe_{0.08}O_2$	78.90
$Ti_{0.88}Fe_{0.12}O_2$	64.24
Commercial TiO ₂ (P25)	47.13

Table S1. BET surface area for bare TiO_2 and Fe-doped TiO_2 samples.

Fig. S1 UV-visible diffused reflectance spectrum of anatase TiO_2 , Fe-doped TiO_2 and commercial Fe_2O_3 nanoparticle.

Fig. S2 Linear sweep voltammograms for an aqueous electrolyte of 0.1 M NaClO₄ on Fe_2O_3 electrode.

Fig. S3 TEM images of Au deposited on (a) bare TiO_2 nanoparticle and (b) $Ti_{0.88}Fe_{0.12}O_2$

Fig. S4 CO oxidation on (a) Au/TiO₂, (b) Au/Ti_{0.94}Fe_{0.06}O₂ catalysts at T₉₀ for 100 hr. T₉₀ of Au/TiO₂, Au/Ti_{0.94}Fe_{0.06}O₂ catalysts was 92 °C and 166 °C, respectively.