Electronic Supplementary Information (ESI)

Intramolecular π-stacking in cationic iridium(III) complexes with triazole-pyridine type ancillary ligand: synthesis, photophysics, electrochemistry properties and piezochromic behavior

Guo-Gang Shan,^a Hai-Bin Li,^a Dong-Xia Zhu,^a Zhong-Min Su,^a* Yi Liao^b*

^aInstitute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Repubic of China; Fax: +86-431-85684009 Tel.: +86-431-85099108, E-mail: <u>zmsu@nenu.edu.cn</u>

^bDepartment of Chemistry, Capital Normal University, Beijing, People's Republic of China. E-mail: <u>liaoy271@nenu.edu.cn</u>

Table of Contents

1. ¹ H NMR spectra for ligands and complexes	2–3
2.MS spectra of ligands and complexes	3–4
3. X-ray crystallography data	5–6
4 Emission spectra of complexes 1 and 2 in solution and in neat film	7
5. Calculation data	8
6. ¹ H NMR spectra of complexes 1A and 2A in different states	8–9
7. Emission spectra of complexes 1A and 2A in different states	9–10

Fig. S1 ¹H NMR spectrum of ligand Phtz in CDCl₃.

Fig. S2 ¹H NMR spectrum of 1 in d_6 -DMSO.

Fig. S3 ¹H NMR spectrum of **2** in d_6 -DMSO.

Fig. S4 Copy of High resolution mass spectrum for Phtz ligand.

Fig. S5 Copy of the MALDI-TOF MS spectrum for 1 (positive mode)

Fig. S6 Copy of the MALDI-TOF MS spectrum for 2 (positive mode).

	1	2
Famoula	$C_{37}H_{24}F_{10}$	$C_{82}H_{60}F_{12}$
Formula	IrN ₈ P	$Ir_2N_{12}P_2$
Mr	993.81	1887.76
Crystal system	Monoclinic	Triclinic
Space group	P2(1)/c	P-1
a /Å	10.089(5)	14.469(5)
b /Å	22.846(5)	15.705(5)
c /Å	16.127(5)	17.649(5)
$\alpha/^{\circ}$	90	109.763(5)
β/°	100.922(5)	90.435(5)
$\gamma/^{\circ}$	90	91.581(5)
$V/Å^3$	3650(2)	3694(2)
Ζ	4	2
$\rho_{calc} (g/cm^3)$	1.809	1.697
temp (K)	293(2)	293(2)
μ/mm^{-1}	3.794	3.728
R _{int}	0.0626	0.0364
Goodness-of-fit on F ²	0.986	1.008
$R_1^{a}, w R_2^{b} [I >$	0.0408,	0.0565,
2σ(I)]	0.0484	0.1232
R_1 , wR_2 (all	0.0920,	0.1134,
data)	0.0568	0.1565

 Table S1 Crystal data and summary of data collection and refinement for complexes 1

 and 2

^{*a*} $R_1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|$. ^{*b*} $wR_2 = \{\Sigma [w(Fo^2 - Fc^2)^2] / \Sigma [w(Fo^2)^2] \}^{1/2}$

.

Complex 1			
Ir1–N2	2.028(4)	Ir1–N4	2.018(4)
Ir1-C10	2.004(5)	Ir1–C1	2.005(5)
Ir1–N5	2.161(3)	Ir1–N6	2.145(4)
C1-Ir1-N2	80.02(19)	N5-Ir1-N6	75.98(14)
C10-Ir1-N4	80.26(19)		
Complex 2			
Ir1–N1	2.010(8)	Ir2–N7	2.032(8)
Ir1–N2	2.043(8)	Ir2–N8	2.069(8)
Ir1–C1	1.999(10)	Ir2-C42	1.994(10)
Ir1-C12	1.998(8)	Ir2–C58	2.005(9)
Ir1–N3	2.158(7)	Ir2–N9	2.174(8)
Ir1–N4	2.187(8)	Ir2-N10	2.221(8)
C1–Ir1–N1	80.3(3)	C42-Ir2-N7	81.4(4)
C12–Ir1–N2	79.6(3)	C58-Ir2-N8	79.3(4)
N3-Ir1-N4	76.0(3)	N9-Ir2-N10	75.5(3)

Table S2 Selected bond lengths (Å) and angles (°) for complexes 1 and 2

Fig. S7 The intramolecular π - π interaction in complex 2.

Fig. S8 The emission spectra of complexes 1 and 2 in CH₂Cl₂ at room temperature

Fig. S9 The emission spectra of complexes 1 and 2 in neat film.

Table S3 The calculated energy levels of the lower-lying transitions of complexes 1 and 2.

Complex	States	Assignment	eV	f	Nature
1	T_1	H→L (91%)	2.86	0	³ MLCT/ ³ LLCT
2	T_1	H→L (95%)	2.53	0	³ MLCT/ ³ LLCT

Fig. S10 Spin-density distributions of complexes 1 and 2.

Fig. S11 Solid-state absorption spectra of complexes 1 and 2 before (1A and 2A) and after (1G and 2G) grinding.

Table S4 Solid-state photophysical data and of DSC results of complexes 1 and 2 $\,$

compound	emission λ_{max} [nm]	lifetime [µs]	$T_{cry}[^{o}C]^{a} (\Delta H [J/g])$
1A	471	0.94	_
1 G	499	1.0	192 (15.7)
2A	542	0.70	_
2 G	563	0.50	217 (15.5)

before (1A and 2A) and after (1G and 2G) grinding.

^a Crystallization temperature.

Fig. S12 Emission spectra of 1A (a) and 2A (b) in different states at room temperature.

Fig. S13 ¹H NMR spectra of **1A** in different states.

Fig. S14 ¹H NMR spectra of 2A in different states.

Fig. S15 The samples **1A** (up) and **2A** (down) were cast on the filter paper and the letters "IFMC" were written with a spatula under UV-light at room temperature.

Fig. S16 The Power X-ray diffraction patterns of the recrystallization on ground

samples.

Fig. S17 The emission spectra of the recrystallization on ground samples.