Electronic Supplementary Information (ESI) for Journal of Materials Chemistry

A general route to nanostructured $M[V_3O_8]$ and $M_x[V_6O_{16}]$ (x = 1 and 2) and their first evaluation for building enzymatic third generation biosensors.[†]

Nathalie Steunou,^{* *a,b*} Christine Mousty,^c Olivier Durupthy,^{*a*} Cécile Roux,^{*a*} Guillaume Laurent,^{*a*} Corine Simonnet-Jégat,^{*b*} Jacky Vigneron,^{*b*} Arnaud Etcheberry,^{*b*} Christian Bonhomme,^{*a*} Jacques Livage,^{*a*} and Thibaud Coradin.^{*a*}

Fig. S1: X-ray diffraction patterns of $M[V_3O_8]$ and $M[V_6O_{16}]$ phases. In the title of figures VM-X-Y, M corresponds to the cation, X to the pH value and Y to the ageing time.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2012

Fig. S1: X-ray diffraction patterns of $M[V_3O_8]$ and $M[V_6O_{16}]$ phases. In the title of figures VM-X-Y, M corresponds to the cation, X to the pH value and Y to the ageing time.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2012

Fig. S2: SEM images for (a) $Mg[V_6O_{16}]7.1H_2O$ (images A1 and A2, $pH_i = 2, 4$ days); (b) Ca[V_6O_{16}] 9.7H_2O (image B1 $pH_i=2, 7$ days) (image B2 $pH_i=3, 14$ days); (c) Ba_{1.2}[V_6O_{16}]5.5H_2O (images C1 and C2, $pH_i = 2, 14$ days)

Fig S3. SEM images of $K_2[V_6O_{16}]$ -GOx biomembrane prepared by adsorption.

Fig S4: Relative amount of tri- and hexavanadates (i. e. m $(MV_3O_8/(m(MV_3O_8)+m(V_2O_5)))$ versus ageing at pH 2 for different monovalent and bivalent cations. The relative amount of Ba_{1.2}[V₆O₁₆] is not reported because of the concomitant presence of $3Ba[V_{10}O_{28}]21H_2O$ in a significant amount.

Fig. S5. XRD pattern of (a) V₂O₅.nH₂O gel at pH 1, (b) V₂O₅.nH₂O gel at pH 4 and 5.

For these experiments, $V_2O_5.nH_2O$ gels are deposited on glass substrates and the resulting films are immersed in acetate buffers of pH between 3 and 5. Due to the preferential orientation of V_2O_5 ribbon particles on flat surfaces, the XRD pattern of $V_2O_5.nH_2O$ gels at pH between 1 and 5 display only the series of 00 ℓ reflections. The XRD diagrams of $V_2O_5.nH_2O$ gels at 3<pH<5 indicate that the structure of the gels is preserved until pH 5 despite of a little difference in the d₀₀₁ value indicating a slight modification of the interlamellar space and the presence of an impurity of small amount at pH 5 (*).

The XRD pattern of V₂O₅ sol at pH 5 and V₂O₅.nH₂O-GOx biomembranes do not display XRD reflections. Actually, by redispersion of the gel in aqueous solution, the resulting V₂O₅ sol is then deposited on the glass substrate and dried. The stacking of V₂O₅ particles is not anymore present in the dried V₂O₅ film and the particles are completely disorganized. Since V₂O₅-GOx biomembrane results from the adsorption of enzyme onto these V₂O₅ films, no XRD reflections are present in the pattern of the V₂O₅.nH₂O-GOx biomembranes.

Fig. S6. Representative FT-IR spectra of pure a) $K_2[V_6O_{16}]$.nH₂O and b) GOx samples.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2012

Fig. S7. V2p3/2 XPS spectra of a) K_2[V_6O_{16}]- pH 3, b) K_2[V_6O_{16}]- pH 6) c) K_2[V_6O_{16}]- GOx_{cos}

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2012

Fig. S8. Comparison of a) the V2p , b) K2p and C1s XPS spectra for $K_2[V_6O_{16}]$ -pH 3, $K_2[V_6O_{16}]$ -pH 6) and $K_2[V_6O_{16}]$ -GOx $_{cos}$

Table S1. V2p 3/2 peak positions and atomic ratio for $K_2[V_6O_{16}]$ -pH 3, $K_2[V_6O_{16}]$ -pH 6) and $K_2[V_6O_{16}]$ -GOx $_{cos}$

sample	Positions (eV)	Assignment	FWHM (eV)	Area (P) CPS.eV	%	$[V^{5+}]/[V^{4+}]$
K ₂ [V ₆ O ₁₆]-pH 3	515.79 516.93	V2p Scan A (V ⁴⁺) V2p (V ⁵⁺)	1.21 1.21	2028.43 39416.73	0.27 5.24	19.4
K ₂ [V ₆ O ₁₆]-pH 6	515.89 517.07	V2p Scan A (V ⁴⁺) V2p3 (V ⁵⁺)	1.28 1.28	767.73 8769.83	0.13 2.17	16.7
$K_2[V_6O_{16}]$ - GOx_{cos}	515.77 516.96	V2p 3A (V ⁴⁺) V2p3 (V ⁵⁺)	1.27 1.27	653.64 8519.45	0.11 1.38	12.5

Fig. S9. Storage stability of the $K_2[V_6O_{16}]$ -GOx_{cos} biosensor (pH 6.0)