# **Electronic Supplementary Information**

# Shifting and Non-Shifting Fluorescence Emitted by Carbon Nanodots

Yan-Min Long, Chuan-Hua Zhou, Zhi-Ling Zhang, Zhi-Quan Tian, Lei Bao, Yi Lin and Dai-Wen Pang\*

#### 1. Preparation of carbon paste electrodes

Two kinds of carbon pastes were prepared by thoroughly mixing the conductive carbon black (Vulcan XC72, Cabot) and liquid olefin at mass (g)/volume (mL) ratios of 6:4 and 7:3, respectively. And the mass factions of carbon black in resultant carbon pastes were 64% and 73%, respectively. The carbon paste electrodes were prepared by firmly filling the corresponding carbon paste into 10  $\mu$ L pipet tip of a fixed length after cutting off the head and tail parts, with the slimmer end inserted by a length of Pt wire for the electrical contact and the other end as a disk surface. The disk surface of the electrode was polished on a piece of weighing paper and then rinsed prior to use.

#### 2. Charging current measurement of carbon paste electrodes



*Fig. S1* Cyclic voltametry of 64% carbon paste electrode in  $0.1 \text{ M NaH}_2\text{PO}_4$  aqueous solution before (A) and after 1h electro-oxidation (B). Cyclic voltametry of the pristine 64% (C) and 73% (D) carbon paste electrode, respectively.

#### 3. Statistical size distribution based on TEM data



*Fig. S2* Statistical size distributions of 64% C-dots (A), 73% C-dots (B) and 73% C-dots after electro-oxidation at +1.5V (C). TEM image of the electro-oxidized 73% C-dots (D). The statistical results were given based on sizes of more than 200 C-dots in each sample.

# 4. Zeta potential of C-dots



Fig. S3 Zeta potential of 73% C-dots (A) and 64% C-dots (B).

# 5. Typical fluorescence decay of the C-dots



*Fig. S4* Fluorescence decay curve of 64% C-dots recorded at the emission wavelength of 500 nm with the excitation of 337 nm.



6. Photostability of C-dots

*Fig. S5* Effect of continuous irradiation with an ultraviolet light on the fluorescence intensity of 64% C-dots (A) and 73% C-dots (B). The fluorescence intensity was collected at the maximum emission wavelength.

## 7. Cytotoxicity assay and cell labeling



*Fig. S6* Effect of the 64% C-dots on human A549 cells (human lung carcinoma epithelial cells) viability (A) and confocal images of MDCK cells with (D, E) and without (B, C) internalized 64% C-dots under bright field (B, D) and fluorescent field (C, E). The cell imaging experiment was conducted as follows. MDCK cells were incubated in petri dish at 37

°C until confluence was reached and then 500  $\mu$ L C-dots solution mixed with 1mL culture medium was added into the petri dish. After incubation with C-dots for 2 hours, MDCK cells in the petri dish were washed with 1×PBS for three times and kept in 1×PBS for cell imaging.

## 8. The area percentages of deconvoluted peaks in C1s XPS spectra

*Table S1.* The summarized data of area percentages of resolved peaks in total C1s XPS spectra of three samples

| sample                          | C-C<br>(area %) | C-O<br>(area %) | C=O<br>(area %) | O-C=O<br>(area %) |
|---------------------------------|-----------------|-----------------|-----------------|-------------------|
| 64% C-dots                      | 59.7            | 17.2            | 11.1            | 12.0              |
| 73% C-dots                      | 74.2            | 11.7            | 10.2            | 3.8               |
| EO-73%<br>C-dots <sup>[a]</sup> | 64.0            | 16.7            | 15.6            | 3.7               |

[a] EO-73% C-dots stands for the electro-oxidized 73% C-dots