Supplementary Information for

Biodegradable Poly(ε-caprolactone)-g-Poly(2-hydroxyethyl methacrylate) Graft Copolymer Micelles as Superior Nano-Carriers for "Smart" Doxorubicin Release

Ru Cheng, ^a Xiaoyan Wang, ^a Wei Chen, ^a Fenghua Meng, ^a Chao Deng, ^a Haiyan Liu, ^b and Zhiyuan Zhong *. ^a

Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.

^b Laboratory of Cellular and Molecular Tumor Immunology, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, P. R. China.

* Corresponding author. Tel/Fax: +86-512-65880098, Email: zyzhong@suda.edu.cn

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2012

Figure S1. ¹H NMR spectra (400 MHz, CDCl₃) of PCL(Acr) (A) and PCL(Cys) (B).

Figure S2. Intensity ratio I_{373}/I_{383} of pyrene at varying PCL-*g*-PHEMA(16.3k) concentrations in water (pyrene final concentration is 0.6 μ M).