Supporting Information

Thermal stability of Fe-Mn binary olivine cathode for Li rechargeable battery

Jongsoon Kim¹, Kyu-Young Park², Inchul Park², Jung-Keun Yoo³, Jihyun Hong¹, and Kisuk Kang¹*

¹Department of Materials Science and Engineering, Seoul National University, 599 Gwanakro, Gwanak-gu, Seoul, Korea 151-742,

²Graduate school of Energy, Environment, Water and Sustainability (EEWS), ³Department of Materials Science and Engineering, KAIST (Korea Advanced Institute of Science and Technology), Gwahangno 335, Yuseong-gu, Daejeon, Korea 305-701

Corresponding Author: Prof. Kisuk Kang

E-mail: matlgen1@snu.ac.kr

TEL: +82-2-880-7088

S1. As-prepared LiFe_{1-x}Mn_xPO₄ ($0 \le x \le 1$)

The XRD patterns of the as-prepared LiFe_{1-x}Mn_xPO₄ ($0 \le x \le 1$) are shown in Supporting Figure S1. Phase-pure olivine materials were identified from the powder XRD measurements. No noticeable impurity or second phase was observed in the XRD pattern of each sample. The solid solution between LiMnPO₄ and LiFePO₄ was confirmed at $0 \le x \le 1$ of LiFe₁. $_x$ Mn_xPO₄ with continuous variations in the lattice parameters *a*, *b*, and *c* as tabulated in Supporting Table S2.^{1, 2} The small difference in lattice parameters among LiFe_{1-x}Mn_xPO₄ was caused by the different ionic radii of Mn²⁺ and Fe²⁺ (Mn²⁺ > Fe²⁺) and their composition ratio in the materials.³⁻⁵

The thermal stability of the as-prepared LiFe_{1-x}Mn_xPO₄ series was first examined. Supporting Figure S2 shows the XRD patterns of each LiFe_{1-x}Mn_xPO₄ measured from 25°C to 700°C. No noticeable phase transformation was observed up to 700°C. Only the thermal expansion of the olivine crystal LiFe_{1-x}Mn_xPO₄ was detected from the shift of the XRD peaks at elevated temperatures. The quantitative analysis of the lattice parameter change from the Rietveld refinement is shown in Supporting Figure S3 with the thermal coefficients tabulated in Supporting Table S3. Linear thermal coefficients of *a*, *b*, and *c* lattices and the volumic thermal coefficients of the Li_{1-y}Fe_{1-x}Mn_xPO₄ samples were all within the same orders of magnitude.

The delithiated samples of $\text{Li}_{1-y}\text{Fe}_{1-x}\text{Mn}_x\text{PO}_4$ were prepared from the chemical method as described in the experimental section. It was observed that the delithiation process generally took longer with higher contents of Mn in the sample, which is in agreement with the fact that Mn-rich olivine cathodes usually exhibit a low power capability.⁶ The delithiation mechanism of $\text{Li}_{1-y}\text{Fe}_{1-x}\text{Mn}_x\text{PO}_4$ at 25°C was monitored by the XRD patterns, as shown in Supporting Figure S4. Similar to previous reports,^{7,8} the delithiation mechanism of

the two-phase reaction was observed with the single component olivine (LiFePO₄ and LiMnPO₄). However, the binary component olivine showed a mixed behavior of one-phase and two-phase reactions. Delithiation of LiFe_{0.5}Mn_{0.5}PO₄ and LiFe_{0.25}Mn_{0.75}PO₄ exhibited the growth of a new delithiated olivine phase accompanied with an apparent XRD peak shift of the mother phase (LiFe_{0.5}Mn_{0.5}PO₄ and LiFe_{0.25}Mn_{0.75}PO₄).² In the case of LiFe_{0.75}Mn_{0.25}PO₄, the XRD peaks were continuously shifted with delithiation and no emerging new XRD peaks from the second phases was observed. In the following sections, we evaluated the thermal characteristics of Li_{1-y}Fe_{1-x}Mn_xPO₄ using these prepared samples.

S2. *In-situ* XRD patterns of $\text{Li}_{1-y}\text{Fe}_{1-x}\text{Mn}_x\text{PO}_4$ ($0 \le x, y \le 1$)

Supporting Figure S5 shows that *in-situ* XRD patterns of fully delithiated Fe₁. _xMn_xPO₄ ($0 \le x \le 1$) at temperature from 25°C to 700°C and at 2 θ from 15° to 45°. All fully delithiated phase experienced a two-tiered thermal decomposition by elevated temperatures. First, Fe_{1-x}Mn_xPO₄ ($0 \le x \le 1$) were decomposed into (Fe_{1-x}Mn_x)₃(PO₄)₂ ($0 \le x \le 1$). After more heating, (Fe_{1-x}Mn_x)₃(PO₄)₂ ($0 \le x \le 1$) were finally decomposed into (Fe_{1-x}Mn_x)₂P₂O₇ ($0 \le x \le 1$). The first decomposition temperature of each fully delithiated phase was influenced by Mn contents in the structure. Higher Mn contents exhibited poor thermal stability of the materials.

Supporting Figure S6 shows that *in-situ* XRD patterns of partially delithiated Li₁. _yFe_{1-x}Mn_xPO₄ ($0 \le x \le 1, y \approx 0.6$) at temperature from 25°C to 700°C and at 20 from 15° to 45°. The XRD patterns of Li_{0.6}FePO₄, LiFe_{0.5}Mn_{0.5}PO₄, and LiFe_{0.25}Mn_{0.75}PO₄ started to merge with the appearance of broad patterns for the solid solution phase at high temperature ($\ge 250^{\circ}$ C) and LiFe_{0.75}Mn_{0.25}PO₄ exhibited the solid solution phase at room temperature. In case of Li_{0.5}MnPO₄, the fully delithiated phase (=MnPO₄) gradually disappeared and the Mn₃(PO₄)₂ phase appeared at the expense of MnPO₄ instead of forming a solid solution of Li_{0.5}MnPO₄ as observed for Li_{0.6}FePO₄. At more elevated temperature (\geq 550°C), all partially delithiated materials are decomposed into Fe_{1-x}Mn_xP₂O₇ (0 ≤ x ≤ 1, y ≈ 0.6).

Figure S1 XRD patterns of as-prepared LiFe_{1-x}Mn_xPO₄ [$0 \le x \le 1$]

Figure S2 *in-situ* XRD patterns of as-prepared (a) LiFePO₄, (b) LiMnPO₄, (c) LiFe_{0.75}Mn_{0.25}PO₄, (d) LiFe_{0.5}Mn₀₂₅PO₄, and (e) LiFe_{0.25}Mn_{0.75}PO₄ at temperature from 25°C to 700°C and at 20 from 15° to 45°

Figure S3 (a) Lattice parameter *a*, (b) Lattice parameter *b*, (c) Lattice parameter *c*, and (d) volume of LiFe_{1-x}Mn_xPO₄ $[0 \le x \le 1]$ varied by temperature.

Figure S4 (a) Evolution of XRD patterns of (a) $\text{Li}_{1-y}\text{FePO}_4$ (b) $\text{Li}_{1-y}\text{MnPO}_4$, (c) Li_1 . $_y\text{Fe}_{0.75}\text{Mn}_{0.25}\text{PO}_4$, (d) $\text{Li}_{1-y}\text{Fe}_{0.5}\text{Mn}_{0.5}\text{PO}_4$, and (e) $\text{Li}_{1-y}\text{Fe}_{0.25}\text{Mn}_{0.75}\text{PO}_4$ [$0 \le y \le 1$] with a delithiation process.

Figure S5 *in-situ* XRD patterns of fully delithiated (a) FePO₄, (b) MnPO₄ (* : the XRD peak of Pt holder), (c) $Fe_{0.75}Mn_{0.25}PO_4$, (d) $Fe_{0.5}Mn_{025}PO_4$, and (e) $Fe_{0.25}Mn_{0.75}PO_4$ at temperature from 25°C to 700°C and at 20 from 15° to 45°

Figure S6 *in-situ* XRD patterns of partially delithiated (a) $Li_{0.6}FePO_4$, (b) $Li_{0.5}MnPO_4$, (c) $Li_{0.44}Fe_{0.75}Mn_{0.25}PO_4$, (d) $Li_{0.4}Fe_{0.5}Mn_{025}PO_4$, and (e) $Li_{0.46}Fe_{0.25}Mn_{0.75}PO_4$ at temperature from 25°C to 700°C and at 20 from 15° to 45°

Figure S7 (a) Comparison of lattice parameter *a* of Li_yFePO_4 [y = 0, 0.6, and 1] varied by temperature and (b) XRD patterns of partially delithiated $\text{Li}_{0.6}\text{FePO}_4$ at 700°C compared with Fe₂P₂O₇ and Fe₇(PO₄)₆ among at 20 from 15° to 45°.

Figure S8 (a) *in-situ* XRD patterns of fully delithiated MnPO₄ at temperature from 200°C to 400°C and at 20 from 24° to 40° and (b) *in-situ* XRD patterns of fully delithiated MnPO₄ at temperature from 450°C to 600°C and at 20 from 15° to 45° (* : the XRD peak of Pt holder)

Figure S9 Comparison of lattice parameter *a* of (a) $\text{Li}_y\text{Fe}_{0.75}\text{Mn}_{0.25}\text{PO}_4$ [y = 0, 0.44, and 1], (b) $\text{Li}_y\text{Fe}_{0.5}\text{Mn}_{0.5}\text{PO}_4$ [y = 0, 0.44, and 1], and (c) $\text{Li}_y\text{Fe}_{0.25}\text{Mn}_{0.75}\text{PO}_4$ [y = 0, 0.46, and 1] varied by temperature

	Atom	As-prepared phase	Partially delithiated phase	Fully delithiated phase
Li _{1-y} FePO₄	Li	1	0.6	0
	Fe	1	1	1
Li _{1-y} Fe _{0.75} Mn _{0.25} PO ₄	Li	1	0.44	0
	Fe	0.75	0.75	0.75
	Mn	0.25	0.25	0.25
Li _{1-y} Fe _{0.5} Mn _{0.5} PO ₄	Li	1	0.4	0
	Fe	0.5	0.5	0.5
	Mn	0.5	0.5	0.5
Li _{1-y} Fe _{0.25} Mn _{0.75} PO ₄	Li	1	0.46	0
	Fe	0.25	0.25	0.25
	Mn	0.75	0.75	0.75
Li _{1-y} MnPO ₄	Li	1	0.5	0
	Mn	1	1	1

Table S1Atomic ratio of Li, Fe, and Mn in $Li_{1-y}Fe_{1-x}Mn_xPO_4$ [$0 \le x, y \le 1$]

	a (Å)	<i>b</i> (Å)	c (Å)
LiFePO ₄	10.328	6.009	4.697
LiFe _{0.75} Mn _{0.25} PO ₄	10.348	6.026	4.704
LiFe _{0.5} Mn _{0.5} PO ₄	10.384	6.053	4.718
LiFe _{0.25} Mn _{0.75} PO ₄	10.415	6.079	4.735
LiMnPO ₄	10.450	6.106	4.748

Table S2Lattice parameters of fully lithiated $LiFe_{1-x}Mn_xPO_4$ [$0 \le x \le 1$]

	Lattice	Thermal coefficient (K ⁻¹)
	а	1.57 × 10 ⁻⁴
LiFaDO	Ь	1.08 × 10 ⁻⁴
LIFePO4	с	1.01 × 10 ⁻⁴
	Volume	1.61 × 10 ⁻²
	а	1.49 × 10 ⁻⁴
LiEs Mrs BO	b	1.02 × 10 ⁻⁴
LIFe _{0.75} MIn _{0.25} PO ₄	с	9.49 × 10 ⁻⁵
	Volume	1.53 × 10 ⁻²
	а	1.50 × 10 ⁻⁴
	Ь	9.88 × 10 ⁻⁵
LIFe _{0.5} Mn _{0.5} PO ₄	с	9.09 × 10 ⁻⁵
	Volume	1.50 × 10 ⁻²
	а	1.61 × 10 ^{.4}
	Ь	9.90 × 10 ⁻⁵
LIFe _{0.25} Mn _{0.75} PO ₄	с	9.07 × 10 ⁻⁵
	Volume	1.55 × 10 ⁻²
	а	1.59 × 10 ⁻⁴
LIM-DO	Ь	9.49 × 10 ⁻⁴
LiMnPO ₄	с	9.09 × 10 ⁻⁵
	Volume	1.53 × 10 ⁻²

Table S3The thermal coefficients of fully lithiated $LiFe_{1-x}Mn_xPO_4$ [$0 \le x \le 1$]

Reference

- 1. A. Yamada, Y. Takei, H. Koizumi, N. Sonoyama, R. Kanno, K. Itoh, M. Yonemura and T. Kamiyama, *Chem. Mat.*, 2006, **18**, 804-813.
- 2. A. Yamada, Y. Kudo and K. Y. Liu, J. Electrochem. Soc., 2001, 148, A1153-A1158.
- 3. R. D. Shannon and C. T. Prewitt, *Acta Cryst.B*, 1969, **B 25**, 925-&.
- 4. D. H. Seo, H. Gwon, S. W. Kim, J. Kim and K. Kang, *Chem. Mat.*, 2010, **22**, 518-523.
- Y.-U. Park, J. Kim, H. Gwon, D. H. Seo, S. W. Kim and K. Kang, *Chem. Mat.*, 2010, 22, 2573.
- C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J. B. Leriche, M. Morcrette, J. M. Tarascon and C. Masquelier, *J. Electrochem. Soc.*, 2005, 152, A913-A921.
- S.-W. Kim, J. Kim, H. Gwon and K. Kang, J. Electrochem. Soc., 2009, 156, A635-A638.
- C. Delacourt, P. Poizot, J.-M. Tarascon and C. Masquelier, *Nat Mater*, 2005, 4, 254-260.