Supplementary Information:

Coaxial SnO₂@TiO₂ Nanotube Hybrids: From Robust Assembly Strategies to Potential Application in Li⁺ Storage

Xiaomeng Wu^a, Shichao Zhang^a, Lili Wang^a, Zhijia Du^a, Hua Fang^a, Yunhan Ling^b, Zhaohui Huang^c

^aSchool of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China

^bDepartment of Materials Science and Engineering, Tsinghua University, Beijing 100084, China ^cSchool of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China

Corresponding Authors: csc@buaa.edu.cn

Fig. S1. FESEM images of the synthesized coaxial nanotubes array used for Li^+ storage. a) Top- and cross-section (inset) views of coaxial SnO₂@TiO₂ nanotubes array synthesized with the electrochemical method. b) Top- and cross-section (inset) views of coaxial C/SnO₂@TiO₂ nanotubes array synthesized with the solvothermal method.

Fig. S2. (a) TEM image of the C/SnO₂@TiO₂ coaxial nanotubes and (b) the HRTEM image of the C/SnO₂ layer at the upper lip region.

Fig. S3. (a) XRD pattern of the coaxial C/SnO₂@TNTs. (The low content of amorphous carbon in the C/SnO₂@TNTs brought no diffraction peaks corresponding to graphitic or amorphous carbon were observed in the XRD pattern.) (b) Raman spectrum of C/SnO₂@TNTs. The results exhibit two kinds of peaks, namely, the graphite carbon peak (G peak) located at ~1597 cm⁻¹ and the disordered carbon peak (D peak) at ~1341 cm⁻¹. Besides, the typical peaks (144, 197, 400, 515, and 640 cm⁻¹) corresponding to anatase phase are also appeared. (c) EDS spectra obtained after C/SnO₂@TNTs scratched from the Ti substrate for eliminating the influence of the substrate.

Fig. S4. Selected galvanostatic discharge/charge curves of the electrochemically prepared SnO₂@TNTs (a) and solvothermally prepared C/SnO₂@TNTs (b), respectively.

Fig. S5. (a) Cycling performance of $SnO_2@TNT_s$ cycled at a constant current density of ~124 μ A/cm² and (b) galvanostatic charge-discharge curves for pristine TNTs, $SnO_2@TNTs$ and C/SnO₂@TNTs at a current density of 1240 μ A/cm² (the 70th cycle)

Fig. S6. FESEM images after charge/discharge cycles (insets: higher magnification obtained after scratching): (a) Electrochemically prepared $SnO_2@TiO_2$ (after 50 cycles); (b) Solvothermally prepared $C/SnO_2@TiO_2$ (after 80 cycles).