Preparation and Characterization of layer-by-layer assembly of thiols/Ag nanoparticles/polydopamine on PET bottles for the enrichment of organic pollutants from water samples

Hongyun Niu^a, Saihua Wang^{a,b}, Tao Zeng^a, Yixuan Wang^{a,c}, Xiaole Zhang^{a,d}, Zhaofu Meng^c, Yaqi Cai^{a,*}

^aState Key Laboratory of Environmental Chemistry and Ecotoxicology of Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

^bSchool of Urban and Environmental Science, Northeast Normal University, Changchun, Jilin, China

^cCollege of Science, Northwest A & F University, Yangling, Shaanxi 712100, China ^dCollege of Chemical Engineering and Biological Technology, Hebei Polytechnic University, Tangshan, 063000, Hebei, China

*Corresponding author: Yaqi Cai

Chinese Academy of Sciences

Research Center for Eco-Environmental Sciences

P. O. Box 2871

Beijing 100085, China

E-mail Address: caiyaqi@rcees.ac.cn

Tel: (086) 010-62849182;

Fax: (086) 010-62849239

Seven Tables and six Figures are included in Supporting Information.

SDE hottle	Spacias	Doolr		$\Delta roo(0/)$	Doolr
SPE DOULE	species	reak	ΓΨΓΙΝΙ	Alea (76)	
		position			snape
		(eV)			
Three layers of	C-C	284.85	1.19	52.0	%LG (0)
PDOPA films coated	C-N	285.27	0.95	18.9	%LG (0)
SPE bottle	C-OH	285.85	1.27	19.0	%LG (0)
	C=O	287.87	2.83	10.1	%LG (0)
Thiols/PDOPA coated	C-C	284.43	1.12	38.2	%LG (0)
SPE bottle	C-N/C-S	284.95	0.79	26.5	%LG (0)
(LBL three times)	C-OH	285.49	0.73	17.9	%LG (0)
	C=O	286.13	1.19	17.3	%LG (44)
AgNPs/PDOPA	C-C	284.95	1.43	51.2	%LG (5)
coated SPE bottle	C-N	285.91	1.01	18.1	%LG (0)
(LBL three times)	C-OH	286.82	1.17	14.1	%LG (0)
	C=O	287.95	2.65	16.6	%LG (0)
Thiols/AgNPs/PDOPA	C-C	284.65	1.42	30.1	%LG (0)
coated SPE bottle	C-N/C-S	284.98	1.02	27.3	%LG (0)
(LBL three times)	C-OH	285.50	0.86	20.6	%LG (0)
	C=O	286.13	1.45	21.9	%LG (13)

Table S1 Fitting parameters, constraints, and possible assignments for the component peaks used to reproduce the measured C1s envelopes.

^{*a*} full width at half maximum ^{*b*}% Lorentzian-Gaussian

SPE bottle	Species	Peak position (eV)	FWHM ^a	Area (%)	Peak shape ^b
Three layers of PDOPA films coated	С=О	532.18	1.71	37.3	%LG (0)
SPE bottle	C-OH	533.50	1.96	62.7	%LG (0)
Thiols/PDOPA coated	C=O	532.00	1.61	35.2	%LG (32)
SPE bottle	C-OH	532.99	1.44	39.5	%LG (43)
(LBL three times)	С-О-С=О	533.99	1.68	25.2	%LG (22)
AgNPs/PDOPA	Ag-O	530.86	2.01	39.7	%LG (23)
coated SPE bottle	C=O	532.00	1.44	33.1	%LG (34)
(LBL three times)	C-OH	532.98	1.61	27.2	%LG (100)
Thiols/AgNPs/PDOPA	Ag-O	531.42	1.54	41.3	%LG (0)
coated SPE bottle	C=O	532.09	0.98	21.7	%LG (0)
(LBL three times)	C-OH	532.99	1.06	19.5	%LG (0)
	С-О-С=О	533.72	1.48	17.5	%LG (0)

Table S2 Fitting parameters, constraints, and possible assignments for the component peaks used to reproduce the measured O1s envelopes.

^{*a*} full width at half maximum ^{*b*}% Lorentzian-Gaussian

Table	S3	Fitting	parameter	rs, co	onstraints,	and	possible	assignments	for	the
compo	onen	t peaks i	used to rep	roduc	e the meas	sured	N1s enve	lopes.		

SPE bottle	Species	Peak	FWHM ^a	Area	Peak
		position		(%)	shape ^b
		(eV)			
Three layers of PDOPA	pyridinic N	397.99	1.64	44.1	%LG (64)
films coated SPE bottle	pyrrolic N	399.32	1.75	25.4	%LG (92)
	$-NH_3^+$	405.47	2.17	30.6	%LG (71)
Thiols/PDOPA coated	pyridinic N	398.24	1.44	33.9	%LG (0)
SPE bottle	pyrrolic N	399.47	2.00	21.7	%LG (0)
(LBL three times)	$-NH_3^+$	405.72	1.54	44.5	%LG (0)
AgNPs/PDOPA coated	pyridinic N	397.98	1.74	65.5	%LG (69)
SPE bottle	pyrrolic N	397.85	1.56	34.5	%LG (73)
(LBL three times)					

^{*a*} full width at half maximum ^{*b*}% Lorentzian-Gaussian

Analytes	Linear range ng L ⁻¹	Calibration equation	R ²	Detection limits ^a ng L ⁻¹
FluA	2-200	y = 0.3401x + 4.3587	0.9941	0.45
Pyr	2-200	y = 0.377x + 4.9555	0.9939	0.69
BaA	2-200	y = 0.3025x + 3.1653	0.9941	0.43
BaF	2-200	y = 0.3386x + 1.1011	0.9976	0.10
BaP	2-200	y = 0.3275x + 0.3613	0.9973	0.46
BghiP	2-200	y = 0.3344x + 1.7076	0.9943	0.73
4-NP	100-10,000	y = 0.4239x + 0.0735	0.9975	68
4-OP	100-10,000	y = 0.455x + 0.0387	0.9981	53
DCHP	100-10,000	y = 0.3589x - 0.0135	0.9933	52
DOP	100-10,000	y = 0.375x + 0.1078	0.9997	66

Table S4 Analytical parameters of the proposed method

 $^{\rm a}$ The detection limits were calculated by using S/N=3

Water	Bla	ınk	Spiked sample				
sample			0.5 µg/L		2 μg/L		
	4-NP	4-OP	4-NP	4-OP	4-NP	4-OP	
Influent	0.45±11	0.39±12	0.83	0.91	2.35	2.57	
water			75.8±7.6	105±9.8	94.9±11	98.5±8.5	
Effluent	0.38±1.2	0.15±8.3	0.84	0.66	2.41	1.95	
water			92.0±10.5	101±8.8	102±9.4	89.8±9.8	
River water	ND	ND	0.44	0.43	2.16	1.70	
			88.9±9.5	86.2±6.7	108±5.4	85.1±7.8	

Table S5 Detected concentration (μ g/L) and recoveries of real water samples spiked with 4-NP and 4-OP

Table S6 Detected concentration (µg/L) and recoveries of real water samples spiked with DCHP and DOP

Water	В	lank	Spiked sample					
sample			0.5 µg/L		5 μg/L	5 μg/L		
	DCHP	DOP	DCHP	DOP	DCHP	DOP		
Influent	ND	ND	0.60	0.47	4.61	3.87		
water			120±8.9	93.4±9.2	92.2±9.4	77.4±7.0		
Effluent	ND	ND	0.49	0.40	4.12	3.66		
water			97.2±8.6	79.3±11	82.3±6.8	73.2±6.1		
River water	ND	ND	0.36	0.34	4.35	3.54		
			72.3±1.2	70±6.7	87.1±8.8	70.8±8.7		

Analytes	Influent water				Effluent water			River water			
	D	Detected (ng/L)			Detected (ng/L)			Detected (ng/L)			
	recovery (%)				recovery (%)			recovery (%)			
	Blank	5 ng/L	20 ng/L	Blank	5 ng/L	20 ng/L	Blank	5 ng/L	50 ng/L		
FluA	52.5±1.3	57.1	80.3	ND	3.67	18.3	ND	4.59	48.8		
		91.8±1.2	112±6.9		73.4±6.2	91.4±8.8		91.8±10	101±15		
Pyr	43.7±9.1	49.2	71.9	ND	3.81	17.9	ND	4.94	51.3		
		111±4.9	116±10.8		76.2±6.8	89.7±2.4		98.8±5.8	99.5±14.8		
BaA	13.2±6.3	16.9	36.3	ND	3.91	18.2	ND	4.51	50.2		
		74.0±7.7	115±12		78.1±7.9	91.1±3.0		90.3±9.4	91.6±14.6		
BaF	3.96±14.8	9.04	25.9	ND	5.28	19.6	ND	4.93	50.1		
		101±8.7	96.1±3.5		105±9.7	97.9±2.4		98.6±4.1	90.7±2.2		
BaP	1.82±10.9	6.14	23.1	ND	5.91	18.7	ND	5.76	51.7		
		86.4±12.9	104±6.2		118±4.1	93.6±5.0		115±5.0	92.7±1.8		
BghiP	0.27±8.2	5.31	17.1	ND	3.58	19.1	ND	5.28	56.9		
		100±8.8	82.2±7.5		71.7±4.7	95.4±4.5		106±3.7	92.6±12.6		

Table S7 Detected concentration (μ g/L) and recoveries of real water samples spiked with PAHs

Fig. S1 Images of (A) bare PET bottle, (B) PDOPA film coated PET bottle, (C) AgNPs/PDOPA PET bottle, and (D) thiols/AgNPs/PDOPA bottles.

Fig. S2 Peak fitting of C1s spectra of (A) three layers of PDOPA films coated SPE bottle, (B) thiols/PDOPA coated (LBL three times) SPE bottle, (C) AgNPs/PDOPA coated (LBL three times) SPE bottle, and (D) thiols/AgNPs/PDOPA coated SPE bottle (LBL three times).

Fig. S3 Peak fitting of O1s spectra of (A) three layers of PDOPA films coated SPE bottle, (B) thiols/PDOPA coated (LBL three times) SPE bottle, (C) AgNPs/PDOPA coated (LBL three times) SPE bottle, and (D) thiols/AgNPs/PDOPA coated SPE bottle (LBL three times).

Fig. S4 Peak fitting of N1s spectra of (A) three layers of PDOPA films coated SPE bottle, (B) thiols/PDOPA coated (LBL three times) SPE bottle, and (C) AgNPs/PDOPA coated (LBL three times) SPE bottle.

Fig. S5 Ag3d spectra of AgNPs/PDOPA (LBL three times) SPE bottle and thiols/AgNPs/PDOPA SPE bottle.

Fig. S6 SEM images of cross-section of (A) PET bottle, (C) one layer of PDOPA film coated bottles, (E) AgNPs/PDOPA coated (LBL one time) bottles, and (G) AgNPs/PDOPA coated (LBL twice) bottles; (B), (D), (F), (H) the corresponding EDX mapping and element composition of the marked section in each bottle sample.