SUPPORTING INFORMATION

Non-aggregating Solvatochromic Bipolar Benzo[*f*]quinolines and Benzo[*a*]acridines for Organic Electronics

Atul Goel,^{a,*} Vijay Kumar,^a Salil Pratap Singh,^a Ashutosh Sharma,^a Sattey Prakash,^b Charan Singh,^b R. S. Anand^b

^aDivision of Medicinal and Process Chemistry, Central Drug Research Institute, CSIR, Lucknow 226001, India E-mail: atul_goel@cdri.res.in

^bDepartment of Electrical Engineering, Indian Institute of Technology, Kanpur 208016, India.

Table of Contents

General information	S2
UV-fluorescence spectra of 6b-f, 10, and 11	S3-S6
UV & Fl Graphs of 6a in different solvents	S6
Cyclic Voltammograms of 6a-f, 8a,b, 9a, and 10	S7-S10
<i>I-L-V</i> characteristics (current density and luminance) of device 8a , 9b and 11	S10-S11
Copy of ¹ H and ¹³ C NMR of 6a-f , 8a,b , 9a,b , 10 and 11	S11-S23

General: ¹H and ¹³C NMR spectra were taken at 300 MHz. Chemical shift are reported in parts per million shift (δ -value) from Me₄Si (δ 0 ppm for ¹H) or based on the middle peak of the solvent (CDCl₃) (δ 75.00 ppm for ¹³C NMR) as an internal standard. Signal pattern are indicate as s, singlet; d, doublet; dd, double doublet; t, triplet; m, multiplet. Coupling constant (*J*) is given in hertz. Infrared (IR) spectra were recorded in KBr disc and reported in wave number (cm⁻¹). The ESMS were recorded on MICROMASS Quadro-II LCMS system. The HRMS spectra were recorded as EI-HRMS on a JEOL system or as DART-HRMS (recorded as ES+) on a JEOL-AccuTOF JMS-T100LC Mass spectrometer having DART (Direct Analysis in Real Time) source. UV/Vis spectra were obtained using THF as solvent of choice having concentration is about 10⁻⁶ M. Fluorescence spectra were measured with melting point apparatus. Cyclic Voltammetry was done using Ag/AgCl as reference electrode. All the reactions were monitored by TLC and visualization was done with UV-light (254 nm).

UV and PL spectra of (6b-f, 10 and 11)

UV/Vis spectra were obtained with spectrometer with slit width of 1.5, using THF as solvent of choice having concentration 10^{-6} M. Photoluminescence spectra were obtained with slit width of 1.5, using THF as solvent of choice, having concentration 10^{-6} M.

Figure S1. UV & Fl Graphs of 6b-f, 10 and 11 in THF

Figure S2. UV & Fl Graphs of **6a** in different solvents (Inset shows the fluorescence images of solvatofluorochromism upon irradiation of **6a** in different solvents, from left to right: Cyclohexane, Toluene, THF, DMSO, and DMF).

Fig. S3 Fluorescence spectra of 6c, 8a, 9b, and 11 in powder form, 6c and 8a in the thin film

Electrochemical studies of 6a,b,d,e,f, 8a,b, 9a, and 10

The electrochemical studies were carried out to ascertain the redox behavior and the HOMO, LUMO energy values of the benzo[f]quinolines and benzo[a]acridines. Cyclic voltammetric measurements were performed in a three-electrode cell setup using Ag/AgCl as standard electrode and Pt disc as the working electrode, 2mM of N-heterocyclic compounds, and 0.2M of electrolyte tetrabutylammonium hexafluorophosphate (Bu₄NPF₆) dissolved in N,N-dimethylformamide. All the potentials were calibrated with ferrocene (Fc/Fc⁺).

Figure S3. Cyclic Voltammograms of 6a,b,d,e,f, 8a,b, 9a, and 10

Single layer device characteristics of **6c** (Diode 2) with configuration ITO/PEDOT:PSS(40 nm)/**6c** (100 nm)/LiF (0.7 nm)/Al (200 nm)

Figure S4. I-V characteristics of single layer device of 6c

Device characteristics of of 8a, 9b, and 11

Figure S5. I- L-V characteristics of device of 9b

Figure S6. I- L-V characteristics of device of 11

Figure S10. ¹³C NMR spectrum of 6b in CDCl₃

Figure S12. ¹³C NMR spectrum of 6c in CDCl₃

Figure S14. ¹³C NMR spectrum of 6d in CDCl₃

Figure S16. ¹³C NMR spectrum of 6e in CDCl₃

Figure S18. ¹³C NMR spectrum of 6f in CDCl₃

Figure S20. ¹³C NMR spectrum of 8a in CDCl₃

Figure S22. ¹³C NMR spectrum of 8b in CDCl₃

Figure S24. ¹³C NMR spectrum of 9a in CDCl₃

Figure S26. ¹³C NMR spectrum of 9b in CDCl₃

Figure S28. ¹³C NMR spectrum of **10** in CDCl₃

Figure S30. ¹³C NMR spectrum of **11** in CDCl₃