Electronic Supporting Information (ESI)

γ -Al_{2-x}M_xO_{3±y} (M = Ti⁴⁺ through Ga³⁺): Potential *Pseudo-3D* Mesoporous Material with Tunable Acidity and Electronic Structure

Thomas Mathew,^{a,§} Kumarsrinivasan Sivaranjani,^b Edwin S. Gnanakumar,^b Yusuke Yamada,^{a,#,*} Tetsuhiko Kobayashi,^a and Chinnakonda S. Gopinath^{b,c,*}

^aResearch Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.

^bCatalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.

^cCenter of Excellence on Surface Science, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.

^{\$}Department of Nanotechnology, N. I. University, Kumaracoil 629 180, Tamilnadu, India.

[#]Department of Material and Life Science, Osaka University, Osaka 565-0871, Japan.

ESI-1: Synthesis, Characterization and Catalytic activity measurement details

(a) Preparation of metal ion precursor solutions in EDTA-ED-water mixture

All the metal compounds $[Al(NO_3)_3 \cdot 9H_2O, Ga(NO_3)_3 \cdot nH_2O, TiCl_3$ in HCl solution, NH₄VO₃, Cr(NO₃)_3 \cdot 9H_2O, Mn(NO_3)_2 \cdot 6H_2O, Fe(NO_3)_3 \cdot 9H_2O, Co(NO_3)_2 \cdot 6H_2O, Ni(NO_3)_2 \cdot 6H_2O, Cu(NO_3)_2 \cdot 3H_2O, Zn(NO_3)_2 \cdot 6H_2O], ethylene diamine tetraacetic acid (EDTA), ethylene diamine (ED), and tri-*n*-butyl amine (These chemicals are received from Wako chemicals, Sigma-Aldrich or Chameleon reagent) were used as such without any further purification. The concentration of each metal compound in EDTA-ED-water mixture was either 0.5 M (for Al, Ga, Mn, Fe, Co, Ni, Cu, Zn) or 0.25 M (for Ti, V, Cr) in terms of metal ion content.

The preparation of 0.50 M solution of Al(NO₃)₃·9H₂O in EDTA-ED-water was carried out as folare in precursors $Al(NO_3)_3 \cdot 9H_2O_1$, EDTA and ED the molar ratio lows: The of Al(NO₃)₃·9H₂O:EDTA:ED = 0.1:0.1:0.3 (1:1:3). First, EDTA (29.23 g, 0.1 mol) was mixed with about 125 ml water in a 250 mL beaker. To the EDTA-water mixture, 0.3 mol ED (18.03 g) was added with continuous stirring so that EDTA completely dissolves and a clear solution was obtained. About 0.1 mol of Al(NO₃)₃·9H₂O (37.51 g) was then added to the EDTA-ED-water solution with continuous stirring. A slight precipitation occurs initially. The resulting colloidal solution was then immediately heated by keeping in a water bath that has already maintained at 85-90°C. The solution was stirred using a glass rod during the heating process until the precipitate dissolves completely. A clear solution of Al(NO₃)₃·9H₂O was resulted in about 1 hour heating. The solution was then cooled, and made up to 200 mL in a standard flask. The concentration of Al(NO₃)₃·9H₂O in EDTA-ED-water was 0.5 M.

Similarly, 0.5 M gallium nitrate solution was made in EDTA-ED-water mixture with $Ga(NO_3)_3 \cdot nH_2O$:EDTA:ED at a mole ratio of 1: 1: 2. In an identical manner; 0.25 M (for Ti, V, Cr) or 0.5 M/l (for Mn, Fe, Co, Ni, Cu, Zn) transition metal ion solution was prepared with a mole ratio of metal compound:EDTA:ED = 1:1:2. Note that the order of mixing of various precursors for the preparation of each metal ion solution was similar to the case described for Al^{3+} ion. The dissolution of $Ga(NO_3)_3 \cdot nH_2O$ was comparatively easier than $Al(NO_3)_3 \cdot 9H_2O$ and it can be dissolved in EDTA-ED-water solution while gentle heating at temperature less than $80^{\circ}C$. There is no heating required for all other metal ion cases. If necessary, simple sonication is sufficient for dissolving V and Cr in EDTA-ED-water, whereas metal nitrates of Mn, Fe, Co, Ni, Cu and Zn can easily be dissolved in EDTA-ED-water at room temperature.

Only in the case of Ti, a modified procedure as given below was adopted to prepare the initial Ticontaining solution. Initially, a [Ti(H₂O)(EDTA)] complex was prepared by reacting sodium salt of EDTA and TiCl₃ in HCl solution as previously reported [Sato, M.; Hara, H.; Nishide, T.; Sawada, Y. *J. Mater. Chem.* **1996**, *11*, 1767]. About 4.43 g of Ti complex {[Ti(H₂O)(EDTA)]} was then added to 20 ml EtOH and refluxed at 90°C. To this 3 ml tri n-butylamine was added and continued the reflux process. After 30 minutes, another 3 mL n-Bu₃N was added and then kept for 3 hours at 90°C. A clear solution was obtained, which is the titanium source (at a concentration of 0.25 M) to prepare Al₉GaTi oxide.

(b) Synthesis of mesoporous materials (γ-Al₂O₃, Al₁₀Ga, and Al₉GaTM)

The synthesis procedure for mesoporous γ -Al₂O₃ ($m\gamma$ -Al), mesoporous Al₁₀Ga, and mesoporous Al₉GaTM (TM=Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) was similar to the case described for the synthesis of Al₉GaFe in the experimental section of the communication. Briefly, in each case, the stoichiometric amount of the required metal ion precursor solution is pipetted, mixed well, aged at 60°C (for 30 – 36 hours), heated at 200°C (for 4 hours), and finally calcined at 500°C (for 4 hours).

The amount of precursor solution used for preparing various mesoporous materials are summarized as follows: For the preparation of Al₉GaFe, Al precursor solution (0.5 M, 9 mL), Ga precursor solution (0.5 M, 1 mL) and Fe precursor solution (1 mL of 0.5 M) was used. For mesoporous alumina, Al precursor solution (0.5 M, 11 mL) alone was used, whereas for Al₁₀Ga oxide system, 10 mL of 0.5 M Al precursor solution, and Ga precursor solution (0.5 M, 1 mL) was used. 9 mL of 0.5 M Al precursor solution, 1 mL 0.5 M Ga precursor solution, and 1 mL of 0.5 M transition metal precursor solution (Mn, Fe, Co, Ni, Cu, and Zn) or 2 mL of 0.25 M transition metal precursor solution (Ti, V, and Cr) leads to Al₉GaTM oxide system. TM or Ga content can be varied by simply changing the volume of metal ion precursor solution. Lower concentrated solutions (0.25 M) was essential for Ti^{4+} , V^{5+} , Cr^{3+} cases to achieve complete dissolution of metal ions (that is to get a clear metal ion solution), whereas in other cases complete dissolution of metal ions can be achieved even with higher concentration of 0.5 M (that is with less water).

Figure S1. TEM images of (a) Al₉Ga₂, (b) Al₉GaV, (c) Al₉GaFe, (d) Al₉GaCo, (e) Al₉GaCu, and (f) Al₉GaZn. Selected area electron diffraction (SAED) patterns of (g) Al₉GaZn, and (h) Al₉GaCr. SEM images of (i) Al₉GaFe and (j) Al₉GaCr.

Material	Al, %	0, %	Ga, %	Ni, %	Fe, %
Al ₉ GaNi	31.96 ± 0.14	61.04 ± 0.2	3.25 ± 0.08	3.73 ± 0.08	
A1 CoEo	22.12 ± 0.14	60.0 ± 0.2	2.21 ± 0.09		2.65 ± 0.09
AlgGare	52.12 ± 0.14	60.9 ± 0.2	3.31 ± 0.08		3.03 ± 0.08

Table S1. Atom percent of representative Al₉GaTM determined by EDX

Table S2. Surface area of mesoporous Al-Ga-Cr ternary oxide materials

No.	Material	Surface area, $m^2 g^{-1}$
1	Al ₉ Cr	383
2	Al ₉ Ga _{0.25} Cr	396
3	Al ₉ Ga _{0.5} Cr	401
4	Al ₉ GaCr	374
5	Al ₉ Ga ₂ Cr	322
6	Al ₉ Ga ₄ Cr	290

Figure S2. Acidity of mesoporous γ -Al₂O₃ and mesoporous metal ion incorporated γ -Al₂O₃ samples calcined at 500°C. Acidity was measured through temperature programmed desorption (TPD) of ammonia.

Figure S3. Selectivity of (a) CO_2 and (b) CO at 250 – 400°C on various mesoporous samples. Selectivity was calculated among the carbonaceous products. The label Al and Ga in the figure indicate γ -Al₂O₃ and Al₁₀Ga, respectively, whereas the label transition metal (TM) corresponds to Al₉GaTM. Note an approximately opposite change in selectivity of the above products from Ga, Ti to Cu, Zn at 300°C and 350°C.

Figure S4. DME conversion and H_2 yield measured for the fresh and regenerated catalysts are shown for (a) Al₉GaZn, and (b) Al₉GaNi. The 10 h SRDME studied catalysts (spent catalysts) after air calcination at 500°C represent the regenerated catalyst. Within the experimental limits of uncertainty, the results are reproduced very well highlighting the stability of the materials under reaction conditions.

Figure S5. Ni 2p core level XPS spectra of Al₉GaNi obtained before reaction and after SRDME reaction at 400°C for 10 h. Note the similar spectra indicating the non-leaching of Ni²⁺ from the lattice.