Electronic supplementary information (ESI) for

Preparation and characterization of triptycene-based microporous poly(benzimidazole) networks

Yan-Chao Zhao,^{*a,b*} Qian-Yi Cheng,^{*a*} Ding Zhou,^{*a*} Tao Wang,^{*a*} Bao-Hang

Han*^{,a}

^a National Center for Nanoscience and Technology, Beijing 100190, China

^b Graduate University of Chinese Academy of Sciences, Beijing 100049,

China

Tel: +86 10 8254 5576. Email: <u>hanbh@nanoctr.cn</u>.

Synthesis of 9,10-dimethyltriptycene-2,3,6,7,12,13-hexone

The monomer 9,10-dimethyl-2,3,6,7,12,13-hexahydroxytriptycene (100 mg) was suspended in ethanol (10.0 mL). To the suspension, a mixture of concentrated nitric acid (1.00 mL) and glacial acetic acid (1.00 mL) was added slowly while the temperature was kept at 0–5 °C. The mixture was stirred at room temperature for 24 h. The hexone product was then collected by filtration and washed with water and ethanol. After dried at 80 °C in a vacuum oven, a brown solid was obtained (56 % yield). M.p.: >300 °C; ¹H NMR (400 MHz, *d*⁶-DMSO): δ (ppm) 6.48 (s, 6H, Ar–*H*), 1.80 (s, 6H, –*CH*₃); IR (KBr, cm⁻¹): 3070, 2990, 1661, 1573, 1470, 1390, 1332, 1267, 1150, 1069, 894, 813, 683, 587.

Figure S1. Thermogravimetric analysis (TGA) of TBI-1 and TBI-2.

Figure S2. FT-IR spectra of hexone monomer, terephthalic aldehyde, and TBI-1.

Figure S3. FT-IR spectra of hexone monomer, 4,4'-biphenyldicarboxaldehyde, and TBI-2.

Figure S4. EDX spectrum for TBI-1.

Figure S5. EDX spectrum for TBI-2.

	Carbon	Hydrogen	Nitrogen
TBI-1 (Calcd.)	79.51	4.12	16.36
TBI-1 (Found)	69.94	4.24	15.28
TBI-2 (Calcd.)	81.88	4.79	13.32
TBI-2 (Found)	72.62	4.10	12.37

Table S1. Elemental analysis for TBI-1 and TBI-2 (wt. %)

Figure S6. SEM (a), TEM (b), and HR-TEM (c) images of TBI-1.

Figure S7. X-ray diffraction patterns of TBI-1 and TBI-2.

Figure S8. BET specific surface area plots for **TBI-1** (a, b) and **TBI-2** (c, d) calculated over different relative pressure ranges: $P/P_0 = 0.01-0.10$ (a, c) and $P/P_0 = 0.05-0.20$ (b, d), respectively.

Sample	P/P_0 range	$S_{\rm BET} ({ m m}^2 { m g}^{-1})$	Correlation coefficient	Points	$C \operatorname{constant}^{a}$
TBI-1	0.01-0.10	609	0.9999	5	12292
TBI-1	0.05-0.20	541	0.9993	8	-113
TBI-2	0.01-0.10	582	0.9998	5	1853
TBI-2	0.05 - 0.20	525	0.9994	8	-91

Table S2. BET specific surface area data calculated over different pressure ranges

^{*a*} The low relative pressure range of 0.01-0.10 using five points gives the higher *C* constant values and therefore the best fit to the BET equation.

Figure S9. Carbon dioxide adsorption isotherms for TBI-1 (black solid square) and TBI-2 (red solid circle) at 288 K, respectively.

Figure S10. Virial analysis of the adsorption data for CO_2 on **TBI-1** (black solid square) and **TBI-2** (red solid circle) at 273 K (a) and 288 K (b) at low pressure range.

Figure S11. Variation of isosteric heat of adsorption with amount of adsorbed CO_2 in TBI-1 (black) and TBI-2 (red).