**Electronic Supplementary Information for** 

## Fabrication of Superior-Performance SnO<sub>2</sub>@C Composites for Lithium-Ion Anodes Using Tubular Mesoporous Carbons with Thin Carbon Wall and High Pore Volume

Fei Han,<sup>a</sup> Wen-Cui Li,<sup>a</sup> Ming-Run Li,<sup>b</sup> and An-Hui Lu\*<sup>a</sup>

<sup>a</sup>State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China <sup>b</sup>State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China

\*E-mail: anhuilu@dlut.edu.cn, Tel/Fax: +86-411-84986112



**Scheme S1.** Schematic illustration for particle contact areas (a), and particle size changes during  $Li^+$  insertion/extraction processes (b). (A) Rod-like meosporous carbon granules in our study, and (B) Spherical core-shell SnO<sub>2</sub>@C nanostructures in the literature. Judging from A and B, one can easily envisage that the electrical conductivity of the close packed rod granules (large surface contact area) is superior to that of the close packed spheres (point contact). Especially during a charge process, the contact pattern is still point contact between the core and the shell. Differently, expansion of SnO<sub>2</sub> NPs along the tubular channels results in an increased contact area between SnO<sub>2</sub> NPs and the thin carbon walls.



Fig. S1 N<sub>2</sub> sorption isotherms and pore size distributions (inset) of CMK-5 and CMK-3.

Computational Modeling of Filling Degree:

To calculate the filling degree of pore channels before and after  $Li^+$  insertion, we follow a simple model for the composite with different matrixs and SnO<sub>2</sub> loadings. On the basis of the specific pore volume of carbon matrixs (2.16 cm<sup>3</sup> g<sup>-1</sup> of CMK-5 and 0.92 cm<sup>3</sup> g<sup>-1</sup> of CMK-3) and the density of bulk SnO<sub>2</sub> (6.95 g cm<sup>-3</sup>, from Lange's Handbook of Chemistry), the filling degree of a composite is calculated by equation:

$$\varphi_{\text{filling degree}} = \frac{\omega_{\text{SnO}_2} / \rho_{\text{SnO}_2}}{\omega_{\text{carbon}} \times V_{\text{carbon}}}$$

Here,  $\phi$  is the filling degree;  $\omega$  represents the content of different component;  $\rho$  indicates the density and V is the pore volume.

The volume expansion factor of  $\text{SnO}_2$  after Li<sup>+</sup> insertion is ca. 3.5,<sup>1</sup> indicating the filling degree of Li<sub>4.4</sub>Sn is 3.5 times of the original filling degree. Hence, it is necessary for a considerably large void space to compensate for the huge volume expansion of SnO<sub>2</sub> NPs.



Fig. S2 TEM images of SnO<sub>2</sub>-60@CMK-5.



Fig. S3 Cycle performance of composites at a current density of 200 mA g<sup>-1</sup> between 0.005 and 3 V, by taking the carbon mass of SnO<sub>2</sub>@C into account.

The sample  $SnO_2-60@C/SBA-15$  with ~60 wt %  $SnO_2$  loading was prepared by using C/SBA-15 composite as the template for the encapsulation of  $SnO_2$  nanoparticles, followed by etching out the silica to reserve a vacant small pore channel (3 nm). A comparison of cycle performance of three  $SnO_2@C$  composites based on different carbon matrix is presented in Fig. S3. Remarkably, the reversible capacity of  $SnO_2-60@C/SBA-15$  is lowest in those three  $SnO_2@C$  composite. Therefore, we focus on using CMK-5 as the carbon matrix in the following up study.



Fig. S4 TEM images of Nanocast SnO<sub>2</sub>.



## Fig. S5 TEM images of SnO<sub>2</sub>-80@CMK-5 (inset: SAED pattern).

| Type of material                                | Current density | Voltage<br>range | Initial<br>efficiency | Cycles | Reversible capacity<br>after cycles | Reference  |
|-------------------------------------------------|-----------------|------------------|-----------------------|--------|-------------------------------------|------------|
|                                                 | $(mA g^{-1})$   | (V)              | (%)                   |        | $(mA h g^{-1})$                     |            |
| SnO <sub>2</sub> @CMK-5 tubular composite       | 200             | 0.005-3          | 71                    | 100    | 1039                                | This study |
| Ordered SnO <sub>2</sub> /CMK-3 nanocomposites  | 100             | 0.01-2           | 36                    | 35     | 546                                 | 2          |
| SnO <sub>2</sub> /Graphene nanoporous materials | 50              | 0.05-2           | 43                    | 30     | 570                                 | 3          |
| Coaxial SnO2@carbon hollow nanospheres          | 200             | 0.005-2          | 41                    | 100    | 510                                 | 4          |
| SnO <sub>2</sub> -CNT composite sheet           | 40              | 0.01-3           | 61                    | 56     | 985                                 | 5          |
| SnO2-tube-in-CNT nanostructure                  | 340             | 0.005-3          | 53                    | 200    | 542                                 | 6          |
| Mesoporous SnO <sub>2</sub> on MWCNTs           | 33.3            | 0.005-2          | 74                    | 50     | 345                                 | 7          |
| Core-shell SnO <sub>2</sub> @C composites       | 100             | 0.005-2          | 67                    | 50     | 630                                 | 8          |
| SnO <sub>2</sub> /Fc@SWNTs composite            | 150             | 0.05-3           | 60                    | 40     | 905                                 | 9          |
| C@SnO <sub>2</sub> core-sheath composite        | 50              | 0.005-<br>2.8    | 69                    | 100    | 540                                 | 10         |
| SnO <sub>2</sub> @C hollow spheres              | 100             | 0.005-2          | 45                    | 50     | 473                                 | 11         |
| CNTs@SnO2@C coaxial nanocables                  | 100             | 0.01-2           | 49                    | 65     | 463                                 | 12         |
| SnO2 nanorods@graphene sheets                   | 200             | 0.005-3          | 66                    | 50     | 575                                 | 13         |

## **Table S1.** Comparison of the electrochemical data of $SnO_2(a)C$ composites from literature.

Computational Modeling for Capacity:

In order to clarify the influence of the CMK-5 matrix for  $SnO_2$  NPs on the electrochemical performance of  $SnO_2@CMK-5$  composites, we have calculated the practical capacity of  $SnO_2$  NPs from the total average capacity of  $SnO_2-80@CMK-5$  (1000 mA h g<sup>-1</sup>) and CMK-5 (470 mA h g<sup>-1</sup>). The calculated capacity of a physical mixture with 20 wt % of CMK-5 and 80 wt % of  $SnO_2$  was based on the following equation:

 $C_{SnO2} = (C_{total} - C_{CMK-5} \times \omega_{CMK-5}) / \omega_{SnO2} = (1000 - 470 \times 0.2) / 0.8 = 1133 \text{ mA h g}^{-1}$ 

To support this approach, the theoretical capacity of another composite  $SnO_2-60@CMK-5$  was estimated from the practical capacity of  $SnO_2$  (1133 mA h g<sup>-1</sup>) following the below equation:

 $C_{theoretical} = C_{SnO2} \times \omega_{SnO2} + C_{CMK-5} \times \omega_{CMK-5} = 1133 \times 0.6 + 470 \times 0.4 = 868 \text{ mA h g}^{-1}$ 

Indeed, the observed capacity (890 mA h  $g^{-1}$ ) of the SnO<sub>2</sub>-60@CMK-5 composite is similar to the theoretical capacity, highlighting the superior performance of SnO<sub>2</sub>@CMK-5 composites as LIBs anodes.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is  $\ensuremath{\mathbb{O}}$  The Royal Society of Chemistry 2012



Fig. S6 Cyclic voltammograms of pure CMK-5 anode at a scan rate of 0.2 mV s<sup>-1</sup>.



Fig. S7 XRD pattern of SnO<sub>2</sub>-80@CMK-5 anode after 100 cycles. The strong peaks are assigned to metallic Cu from a Cu foil substrate used in battery test.



Fig. S8 TEM images of SnO<sub>2</sub>-80@CMK-5 after 100 cycles



Fig. S9 Electrochemical impedance spectra obtained by applying a sine wave with amplitude of 5.0 mV over a frequency range 100 kHz–0.01 Hz.

As shown as in Fig. S9a, the charge transfer resistances of CMK-5 and nanocast  $SnO_2$  are almost equivalent and less than that of  $SnO_2$ -60@CMK-5. Meanwhile, Fig. S9b reveals that after 100 cycles the conductivity of  $SnO_2$ -60@CMK-5 is better than that of  $SnO_2$ -60@CMK-3, indicating that tubular mesoporous carbon CMK-5 with thin carbon walls and high pore volume is more suitable than CMK-3 with thick carbon walls and low pore volume for loading  $SnO_2$  as the anodes.

## References

- 1 J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima and J. Li, *Science*, 2010, **330**, 1515.
- 2 H. Qiao, J. Li, J. Fu, D. Kumar, Q. Wei, Y. Cai and F. Huang, ACS Appl. Mater. Interfaces, 2011, 3, 3704.
- 3 S.-M. Paek, E. Yoo and I. Honma, Nano Lett., 2009, 9, 72.
- 4 X. W. Lou, C. M. Li and L. A. Archer, *Adv. Mater.*, 2009, **21**, 2536.
- 5 H.-X. Zhang, C. Feng, Y.-C. Zhai, K.-L. Jiang, Q.-Q. Li and S.-S. Fan, Adv. Mater., 2009, 21, 2299.
- 6 Y. Wang, H. C. Zeng and J. Y. Lee, Adv. Mater., 2006, 18, 645.
- 7 Z. Wen, Q. Wang, Q. Zhang and J. Li, Adv. Funct. Mater., 2007, 17, 2772.
- 8 J. Liu, W. Li and A. Manthiram, Chem. Commun., 2010, 46, 1437.
- 9 J. Li, Y. Zhao, N. Wang and L. Guan, Chem. Commun., 2011, 47, 5238.
- 10 L. Ji, Z. Lin, B. Guo, A. J. Medford and X. Zhang, Chem. Eur. J., 2010, 16, 11543.
- 11 X. W. Lou, D. Deng, J. Y. Lee and L. A. Archer, *Chem. Mater.*, 2008, **20**, 6562.
- 12 P. Wu, N. Du, H. Zhang, J. Yu and D. Yang, J. Phys. Chem. C, 2010, 114, 22535.
- 13 C. Xu, J. Sun and L. Gao, J. Mater. Chem., 2012, 22, 975.