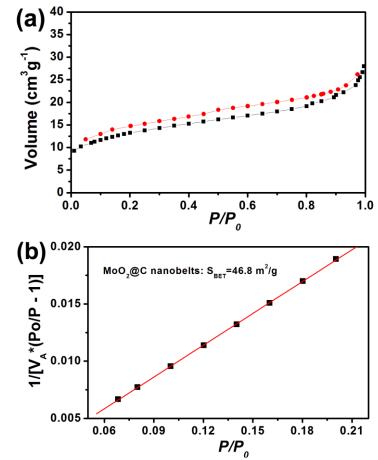
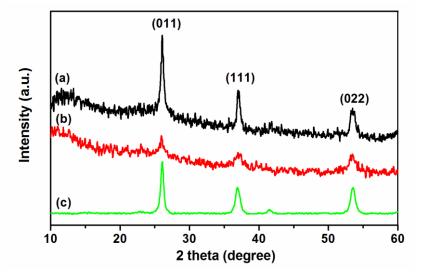
Electronic Supplementary Information


Preparation of carbon coated MoO₂ nanobelts and its high performance as

anode material for lithium ion batteries


Lichun Yang,^{a, b} Lili Liu,^a Yusong Zhu,^a Xujiong Wang^a and Yuping Wu^{*a}

^a New Energy and Materials Laboratory (NEML), Department of Chemistry & Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China

^b Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstrasse 20, Dresden 01069, Germany

Figure S1. (a) N₂ adsorption-desorption isotherms of MoO₂@C NBs, and (b) corresponding BET curve indicating the surface area of $46.8 \text{ m}^2/\text{g}$.

Figure S2. XRD patterns of products obtained through hydrothermal process in case of (a) without glucose, (b) without ethanol and (c) with low $n_{glucose/Mo}$ of 1.71.

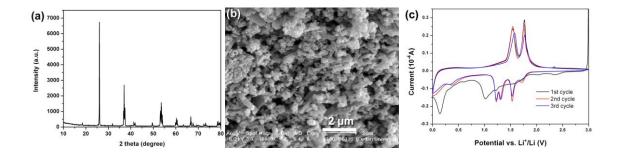
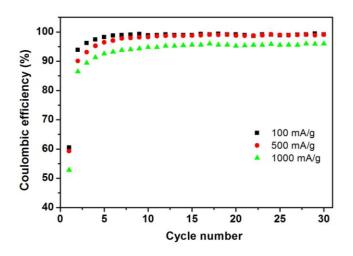
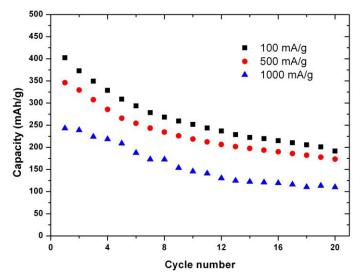




Figure S3. (a) XRD pattern, (b) SEM image and (c) CV curves of MoO_2 microplates purchased from Alfa Aesar. The scan rate of CV test is 0.1 mV/s.

Figure S4. Coulombic efficiency of MoO₂@C NBs during cycling performance in the range of $0.01 \sim 3 \text{ V}$ vs. Li⁺/Li at different current densities.

Figure S5. Cycling performance of commercial MoO_2 nanoparticles purchased from Alfa Aesar tested in the range of 0.01 - 3 V *vs.* metallic lithium.