Supporting information

Hollow carbon cage with nanocapsules of graphitic shell/nickel core as an anode material for high rate lithium ion batteries

Guangmin Zhou^a, Da-Wei Wang^b, Xuyi Shan, Na Li^a, Feng Li^a* and Hui-Ming Cheng^a

^aShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China

^bARC Centre of Excellence for Functional Nanomaterials, AIBN, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia

Figure S1. Thermogravimetric (TG) curves of HCCs-5, HCCs-10 and HCCs-20 in air with a heating rate of 10 °C/min, showing a nickel content of 3.9 wt% (calculated from the weight loss of TG result plus the weight gain of NiO transformed from Ni).

Figure S2. Nitrogen adsorption/desorption isotherms of the HCCs-5, HCCs-10, HCCs-20 and AC.

Figure S3. Pore size distributions of the HCCs-5, HCCs-10, HCCs-20 and AC.

Electrical conductivity(S/cm)

Figure S4. The electrical conductivity of AC, HCCs-5, HCCs-10, and HCCs-20.

Table S1. Porosity parameters of the HCCs-5, HCCs-10, HCCs-20 and AC.

Samples	BET surface area $[m^2 g^{-1}]$	Total pore volume $[cm^3 g^{-1}]$	Micropore volume [cm ³ g ⁻¹]	Micropore content [%]
HCCs-5	566	0.60	0.18	30.0
HCCs-10	1120	0.64	0.39	60.9
HCCs-20	1405	0.74	0.53	71.6
AC	1410	0.68	0.46	67.8