Supporting Information

In Situ Chemical Vapor Reaction in Molten Salts for Preparation of Platinum Nanosheets *via* Bubble Breakage[†]

Haidong Zhao,^{ac, §} Jianbo Wu,^{b, §} Hongjun You,^{a, §}Shengchun Yang,^{*a} Bingjun Ding,^a Zhimao Yang,^a Xiaoping Song,^a and Hong Yang^{*b}

^a School of Science, State Key Laboratory for Mechanical Behavior of Materials, Ministry of

Education Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter,

Xi'an Jiaotong University, Xi'an 710049, Shann Xi, People's Republic of China.

^b Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 114 Roger Adams Laboratory, MC-712, 600 S. Mathews Avenue, Urbana, IL 61801, USA

^c School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009,

People's Republic of China

*Corresponding authors: Shengchun Yang (Email: ysch1209@mail.xjtu.edu.cn); Hong Yang (Email: hy66@illinois.edu)

§ These authors contributed equally to this work.

Figure S1. AFM measurement of Pt nanosheets showing the thickness to be 8.9 nm.

Figure S2. SEM image of the platinum hollow spheres and nanosheets showing their coexistence in the same sample.

Figure S3. (a) XRD pattern and (b) EDX spectrum of Pt nanosheets and hollow spheres.

Figure S4. Schematic of Pt nanostructures formed using two different procedures: (a) the reaction was kept at 180 °C and the finial products were irregular Pt fragments; (b) the reaction temperature was increased to 200 °C after kept at 180 °C for 2 min and the finial products were nano-shells/sheets.

Figure S5. (a) SEM and (b) TEM images of self-supported Pt nanosheets after the 30,000 potential cycles. (c and d) HRTEM images of those regions labeled with "c" and "d" in (b), respectively.