Supporting Information

Tunable Photoluminescence from Visible to Nearinfrared Wavelength Region of Non-stoichiometric AgInS₂ Nanoparticles

Meilin Dai,^a Shoji Ogawa,^a Tatsuya Kameyama,^a Ken-ichi Okazaki,^{a,b} Akihiko Kudo,^c Susumu Kuwabata,^{b,d} Yasuyuki Tsuboi,^e and Tsukasa Torimoto^a

^a Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan. Fax: +81-52-789-5299; Tel: +81-52-789-4614; E-mail: torimoto@apchem.nagoya-u.ac.jp
^b Japan Science and Technology Agency, CREST, Kawaguchi, Saitama 332-0012, Japan.
^c Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
^d Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
^e Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan.

Fig. S1 XRD patterns of OCA-AIS nanoparticles prepared from precursors with various N_{Ag}/N_{metal} ratios. The numbers in the figure represent ratios of N_{Ag}/N_{metal} in the precursors.

Fig. S2 TEM images of OCA-AIS nanoparticles prepared by the decomposition of precursors having various N_{Ag}/N_{metal} mole ratios (a-g) and the relationship between average diameter (solid circles) and content of Ag in the precursor (h). The numbers represent the ratios of N_{Ag}/N_{metal} in precursors. The scale bars are 20 nm in the TEM images. The error bars in figure h indicate the size distribution.

Fig. S3 Absorption spectra (a) and PL emission spectra (b) of OCA-AIS nanoparticles. The excitation wavelength in PL spectra was 430 nm. The numbers in the figures represent the ratios of N_{Ag}/N_{metal} in precursors.