Electronic Supplementary Information

5

A Facile *in-situ* Hydrophobic Layer Protected Selective Etching Strategy for the Synchronous Synthesis/Modification of Hollow or Rattle-type Silica Nanoconstruct

15 Kun Zhang, ^a Hangrong Chen, *^a Yuanyi Zheng, ^b Yu Chen, ^a Ming Ma, ^a Xia Wang, ^a Lijun Wang, ^a and Jianlin Shi*^a

^a State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics, Chinese Academy of Sciences; No.1295 Ding-xi Road, Shanghai; 200050 (P.R.China).

^b Second Affiliated Hospital of Chongqing Medical University; No.6 Lin-jiang Road, Chongqing, 400010 (P. R. China).

*author for correspondence. Email address: <u>hrchen@mail.sic.ac.cn</u>, and <u>jlshi@sunm.shcnc.ac.cn</u> Tel: (+86)021-5241-2706. Fax: (+86)21-5241-3122

Figure S1. a, b) TEM images of HMSNs and RMSNs obtained from PDES, respectively; c, d) TEM images of HMSNs and RMSNs obtained from TSD, respectively.

10

20

25

30

This journal is © The Royal Society of Chemistry [year]

Figure S2. TEM images of HMSNs with a series of different particles size and with their shell functionalized with amino groups from TSD by tuning the adding method and reaction time in initially ³⁰ added TEOS: (a) dropwise adding and for 10min, (b) one-pot adding and for 23min, (c) twice-step adding with 8min interval and for 18min, (d) twice-step adding with 13min interval and for 30min.

Figure S3. EDS spectra of Au@HMSN/Au on the Cu plate without gold sputtering

Figure S4. TEM images of Au@HMSN/Au nanoparticles with different sizes of Au nanoparticles, (a) Au@HMSN/Au-1 obtained under 100 mg of amino-HMSNs reacting with 10ml of HAuCl₄ (0.0125 M) for 1 h; (b) Au@HMSN/Au-2 nanoparticles obtained under 100mg of amino-HMSNs reacting with 15 ml of HAuCl₄ (0.025 M) for 1 h; (c) Au@HMSN/Au-3 nanoparticles obtained under 400 mg amino-HMSNs reacting with 15ml of HAuCl₄ (0.05 M) for 2 h; (d) UV-vis absorption spectra of Au@HMSN/Au-1, Au@HMSN/Au-2 and Au@HMSN/Au-3; (e) N₂ adsorption-desorption isotherms of Au@HMSN/Au-2, and the inset representing the corresponding pore size distributions of Au@HMSN/Au-2; (f) Wide-angle XRD patterns of Au@HMSN/Au-2 nanoparticles and amino-

5

5

10

20

Figure S5. N₂ adsorption-desorption isotherms of $s-SiO_2/h-SiO_2$, and its pore size distribution (the 15 inset) without any dissolution of solid silica inner core ($s-SiO_2$) inner core.

Figure S6. TEM images of s-SiO₂/h-SiO₂ without any dissolution of solid silica inner core (s-SiO₂) ; the size of inner core is 280 ± 10 nm. The inner core was indicated with red dotted line-labled circles.

5

10

Figure S7. Size distribution of inner core in RMSNs obtained by measuring the inner core sizes of 100 ^s nanoparticles in RMSN TEM images.