Supporting Information

Nanoporous Nitrogen Doped Carbon Modified Graphene as Electrocatalyst for Oxygen Reduction Reaction

Yiqing Sun, Chun Li, Gaoquan Shi*

Department of Chemistry and Key Lab of Organic Phosphorus and Chemical Biology of Chinese Education Commission, Tsinghua University, Beijing 100084, People's Republic of China

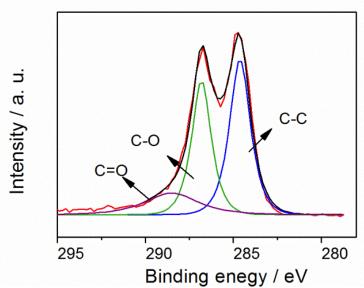
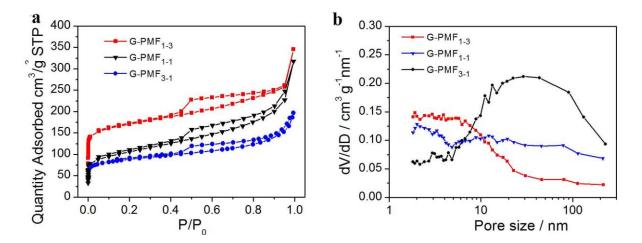
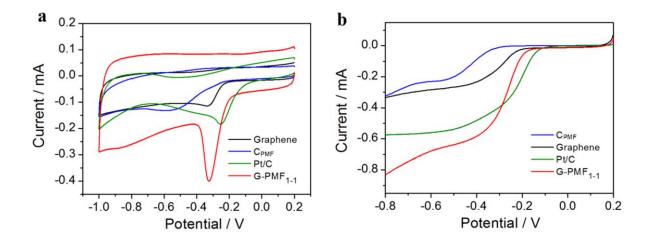




Figure S1 C 1s XPS spectra of graphene oxide (GO). The C 1s XPS spectrum of GO shows

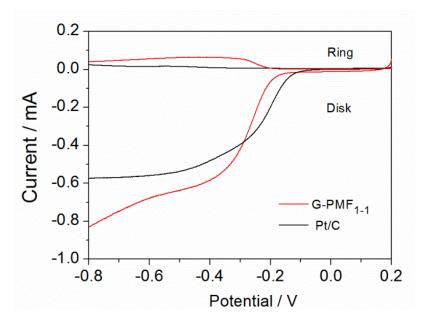

three types of carbon atoms, C=O (288.4 eV), C–O (286.8 eV) and C=C(284.7 eV) .

Figure S2 (a) Nitrogen adsorption/desorption isotherms of G–PMFs. (b) The pore size distributions of G–PMFs.

Figure S3 (a) Typical cyclic voltammogram (CV) of graphene, C_{PMF} , Pt/C or G–PMF₁₋₁ electrode in O₂ saturated 0.1 mol L⁻¹ KOH solution at a scan rate of 100 mV s⁻¹ and (b) RDE voltammogram of graphene, C_{PMF} , Pt/C or G–PMF₁₋₁ electrode in O₂ saturated 0.1 mol L⁻¹ KOH solution at a scan rate of 10 mV s⁻¹ and a rotation rate of 1600 rpm.

Figure S4 Rotating ring–disk electrode (RRDE) volatmmogram of G–PMF₁₋₁ or Pt/C electrode in O_2 saturated 0.1 M KOH at 1600 rpm. The ring electrode was polarized at 0.5 V.

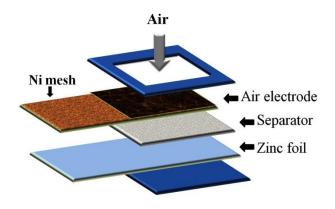


Figure S5 The schematic illustration of a Zn–air battery.