Supporting Information Available

In situ diffusion growth of $Fe_2(MoO_4)_3$ nanocrystals on the surface of α -MoO₃ nanorods with significantly enhanced ethanol sensing properties

Yujin Chen, *^{*a*} Fana Meng, ^{*a*} Chao Ma, ^{*b*} Zhiwei Yang, ^{*b,c*} Chunling Zhu, ^{*d*} Qiuyun Ouyang, ^{*a*} Peng Gao, * ^{*d*} Jianqi Li, ^{*b*} and Chunwen Sun * ^{*b,c*}

^a College of Science, Harbin Engineering University, Harbin, 150001, China

^b Beijing National Laboratory for Condensed Matter Physics, Institute of

Physics, Chinese Academy of Sciences, Beijing, 100190, China

^c Key Laboratory for Renewable Energy, Chinese Academy of Sciences, Beijing, 100190, China

^d College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China

E-mail: chenyujin@hrbeu.edu.cn; csun@iphy.ac.cn and gaopeng@hrbeu.edu.cn

SI-1 SEM image of α-MoO₃ nanorods

Figure S1 A typical SEM image of the pristine α-MoO₃ nanorods

SI-2 STEM images and the electron energy loss spectroscopy analysis of Fe(OH)₃@α-MoO₃ nanorods

Figure S2 (a) STEM image of the $Fe_2(MoO_4)_3$ @MoO₃ nanorod, and (b) the electron energy loss spectroscopy analysis taken at A and B areas in (a).

SI-3 SEM images of Fe(OH)₃@a-MoO₃ nanorods

Figure S3 A typical SEM images of Fe(OH)₃@α-MoO₃ nanorods.

SI-4 XRD pattern of Fe(OH)₃@a-MoO₃ nanorods

Figure S4 XRD pattern of the as-prepared Fe(OH)₃@α-MoO₃ nanorods

SI-5 TEM image of the sample obtained at 500 °C for 1h

Figure S5 TEM image of the sample obtained at 500°C for 1 h.

SI-6 TEM image of the sample obtained at 500°C for 2 h

Figure S6 TEM image of the sample obtained at 500 °C for 2 h.

SI-7 TEM image of the sample obtained at 500 °C for 3 h

Figure S7 TEM image of the sample obtained at 500 °C for 3 h.

SI-8 Preparation of Fe₂(MoO₄)₃ nanocrystals and structural characterization

20 mL of 0.2 mol L^{-1} Fe(NO₃)₃ aqueous solution was added into 50 mL of 0.12 mol L^{-1} (NH₄)₆Mo₇O₂₄ aqueous solution under stirring. The mixture was stirred for 10 min. The precipitate was dried and then thermally treated at 500 °C for 4 h.

Fig. S9 shows the XRD pattern of the final product, in which blue lines denote the locations of the standard diffraction peaks of the monclinic $Fe_2(MoO_4)_3$ (JCPDS, 83–1701, cell parameters: a =15.70Å, b = 9.231Å, c =18.20Å, =125.2°). Compared with the standard data, all peaks, marked by Miller indices, can be indexed to monclinic $Fe_2(MoO_4)_3$. This reveals that the product mainly consists of crystallized $Fe_2(MoO_4)_3$.

Figure S8 XRD pattern of crystalline Fe₂(MoO₄)₃ particles.

Figure S9 SEM image of crystalline Fe₂(MoO₄)₃ nanoparticles.

Fig. S9 shows a typical SEM image of crystallized $Fe_2(MoO_4)_3$ nanoparticles. It can be seen that an average diameter of $Fe_2(MoO_4)_3$ nanoparticles is about 200 nm.

SI-9 Sensor responses of $Fe_2(MoO_4)_3$ (α -MoO_3 nanorods and $Fe_2(MoO_4)_3$ nanoparticles to 10 ppm ethanol

Fig. S10 Sensor responses of $Fe_2(MoO_4)_3@\alpha-MoO_3$ nanorods and $Fe_2(MoO_4)_3$ nanoparticles to 10 ppm ethanol at 220 °C.

SI-10 Stability of Fe₂(MoO₄)₃@α-MoO₃ nanorods to 100 ppm ethanol

Fig. S11 Long-term stability of the $Fe_2(MoO_4)_3(\partial_{\alpha}-MoO_3)$ nanorods to 100 ppm ethanol at 220 °C.

Fig. S12 EDS patterns of the obtained $Fe_2(MoO_4)_3@\alpha-MoO_3$ nanorods by adding different amounts of $Fe(NO_3)_3 \cdot 9H_2O$: (a) 0.1 g of $Fe(NO_3)_3 \cdot 9H_2O$, (b) 0.3 g of $Fe(NO_3)_3 \cdot 9H_2O$ and (c) 0.6 g of $Fe(NO_3)_3 \cdot 9H_2O$.

Fig. S12 shows EDS patterns of the Fe₂(MoO₄)₃@ α -MoO₃ nanorods obtained by adding different amount of Fe(NO₃)₃·9H₂O into the reaction solution. The molar ratios of Mo to Fe for the samples obtained by adding 0.1 g, 0.3g, 0.6g of

 $Fe(NO_3)_3 \cdot 9H_2O$, are 17.7:1, 7.5:1 and 4:1, respectively. It indicates that the content of $Fe_2(MoO_4)_3$ nanocrystals in the nanocomposites is increased with increasing $Fe(NO_3)_3 \cdot 9H_2O$ amount.

Fig. S 13 The sensitivity of the $Fe_2(MoO_4)_3@\alpha-MoO_3$ nanorods to other gases at 220 °C.

Fig. S 14 Time-dependent response of the $Fe_2(MoO_4)_3@\alpha-MoO_3$ nanorods to methanol with different concentrations at 220 °C.