Electronic Supplementary Information for:

Fluorescent carbon nanodots conjugated with folic acid for distinguishing folate-receptor-positive cancer cells from normal cells

Yanchao Song, Wen Shi, Wei Chen, Xiaohua Li, and Huimin Ma*

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: mahm@iccas.ac.cn

Figure S1. Fluorescence emission spectra (with progressively longer excitation wavelengths from 360 nm to 500 nm in 20 nm increment) of the non-passivated C-dots.

Figure S2. ESI-MS of TTDDA in 3 mL water before (top) and after (bottom) heated for 10 min in a 500 W microwave oven with a frequency of 2450 MHz. TTDDA is found to be stable because no obvious change in its mass spectrum is observed after the heat treatment.

Figure S3. Experimental results from AFM image (A) and dynamic light scattering (B) of the passivated C-dots.

Figure S4. FTIR spectra of TTDDA passivated C-dots (a), FA (b), and C-dots-FA (c). As can be seen from these spectra, C-dots-FA (spectrum c) shows not only the

characteristic peaks of the C-dots themselves but also the ones at 1697 and 1606 cm⁻¹ indicative of FA (Li et al, *Chem. Eur. J.*, 2009, **15**, 9868), supporting the successful conjugation of FA to the C-dots.

The Zeta potential of the TTDDA passivated C-dots was measured to be 26.3 mV, suggesting that the surface of the passivated C-dots is positively charged due to the presence of amino groups. After conjugation of FA to the C-dots, the resulting C-dots-FA had a Zeta potential of 3.0 mV, implying that the surface of C-dots-FA is still positively charged. This decrease in Zeta potential may be ascribed to the introduction of FA with carboxyl groups.

Figure S5. UV-vis absorption spectra of non-passivated C-dots before and after reaction with FA-NHS.

Figure S6. AFM image of the product C-dots-FA.

Figure S7. Fluorescence stabilities of passivated C-dots and C-dots-FA versus the time of continuous light excitation. $\lambda_{ex/em} = 488/545$ nm.

Figure S8. Effects of (A) pH and (B) common cellular substances on the fluorescence of C-dots-FA (50 μ g/mL). $\lambda_{ex/em} = 488/545$ nm.

Figure S9. Comparison of fluorescence images of HeLa cells (A and B) and MCF-7 breast cancer cells (C and D) incubated in the presence (A and C) and absence (B and D; controls) of C-dots-FA (50 μ g/mL) at 37 °C for 6 h. The differential interference contrast (DIC) images of the corresponding samples are shown below (panels E-H). Scale bars, 20 μ m.