Supplementary Information:

Figure S1: DSC thermograms (first heating scan, heating rate of $10 \mathrm{~K} \mathrm{~min}^{-1}$) of binary mixtures: a) P3HT and PCPDTBT, b) PCBM and PCPDTBT and c) ternary mixtures with 50 wt\% PCBM including the neat P3HT and PCBM. Thermograms are ploted with exotherm up.

Figure S2: DSC thermograms (first cooling scan, cooling rate of $10 \mathrm{~K} \mathrm{~min}^{-1}$) of binary mixtures: a) P3HT and PCPDTBT, b) PCBM and PCPDTBT and c) ternary mixtures including $50 \mathrm{wt} \%$ PCBM and the neat P3HT and PCBM. Thermograms are ploted with exotherm up.

Figure S3: DSC thermograms (second heating scan, heating rate of $10 \mathrm{~K} \mathrm{~min}^{-1}$) of binary mixtures: a) P3HT and PCPDTBT, b) PCBM and PCPDTBT and c) ternary mixtures with 50 $w t \%$ PCBM including the neat P3HT and PCBM. Thermograms are plotted with exotherm up.

Figure S4: Two-dimensional GiWAXS detector pattern obtained for the as-coated and annealed P3HT films (intensity scale 10000).

For the conversion of mass fractions into volume fractions we assumed a density of about 1 $\mathrm{g} / \mathrm{cm}^{3}$ for PCPDTBT and $1.1 \mathrm{~g} / \mathrm{cm}^{3}$ for P3HT. Since PCPDTBT is less crystalline than P3HT its density should be lower than that of P3HT. For PCBM density values ranging from 1.3 $\mathrm{g} / \mathrm{cm}^{3}$ up to $1.5 \mathrm{~g} / \mathrm{cm}^{3}$ are reported [Ref. (S1-S3)]. This leads to an average PCBM volume fraction of 0.43 ± 0.02.

Table S1: Normalization to PCBM volume fraction

Density PCBM [g/cm3]	P3HT:PCPDTBT wt\%						
	$50: 0$	$40: 10$	$30: 20$	$25: 25$	$20: 30$	$0: 50$	
	PCBM vol\%						
1.3 Ref.(2)	45	45	45	45	44	44	
1.5 Ref.(2)	42	42	41	41	41	41	

Table S2: Device performance of ternary cells with higher PCBM content

ratio P3HT:PCPDTBT:PCBM wt\%	Voc (V)	Jsc $\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$	FF (\%)	PCE (\%)
polymer:fullerene 1:2 wt\%	0.56 ± 0.01	3.6 ± 0.6	42 ± 4.5	0.8 ± 0.2
45:15:120	0.57 ± 0.01	3.5 ± 0.4	39 ± 0.7	0.8 ± 0.1
$\mathbf{5 0 : 1 0 : 1 2 0}$				
polymer:fullerene 1:3 wt\%	0.48 ± 0.02	4.2 ± 0.6	31 ± 1.8	0.6 ± 0.1
$\mathbf{2 0 : 0 5 : 7 5}$	0.57 ± 0.01	2.9 ± 0.3	36 ± 2.4	0.6 ± 0.1
$\mathbf{1 5 : 1 0 : 7 5}$				

References

S1. A.C. Arias, J. Macromol. Sci. Polym. Rev. 2006, 46, 103.
S2. J. W Kiel, B. J. Kirby, C. F. Majkrzak, B. B. Maranville, M. E. Mackay, Soft Matter 2010, 6, 641.
S3. C. W. T. Bulle-Lieuwma, W. J. H. van Gennip, J. K. J. van Duren, et al. Appl. Surf. Sci. 2003, 203, 547.

