Electronic Supplementary Information (ESI) for

Facile Synthesis of SnO₂ Nanofibers Decorated with N-doped ZnO Nanonodules for Visible Light Photocatalyst Using Single-Nozzle Co-Electrospinning

Jun Seop Lee, Oh Seok Kwon and Jyongsik Jang *

World Class University (WCU) program of Chemical Convergence for Energy & Environment (C_2E_2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), 599 Gwanangno, Gwanak-gu, Seoul, 151-742 (Korea). Fax: +82-2-888-7295; Tel: 82-2-880-8348; e-mail: jsjang@plaza.snu.ac.kr

Fig. S1 FE-SEM images of (a) electrospun PAN nanofibers with 220 nm diameter (inset: high resolution of PAN nanofibers) and (b) electrospun PAN(core)/PVP(shell) nanofibers 130-nm-diameter (inset: high resolution of PAN (core)/PVP (shell) nanofibers).

Fig. S2 TEM images of SnO₂ nanofibers from (a) pristine PAN solution with 100 nm diameter and (b) PAN (core)/PVP (shell) core-shell nanofibers 50-nm-diameter.

Fig. S3 Photocatalytic activity of the SZ3 for RB degradation with three times of cycling uses: First (black); Second (red); Third (blue).

Fig. S4 Electron paramagnetic resonance (EPR) signals of the SZ3 with DMPO-'OOH/O₂' adducts as a function of visible-light illumination time (DMPO: 0.15M).

Fig. S5 PL spectra of hybrid SZs nanofibers: S0 (black); SZ1 (red); SZ2 (blue); SZ3 (green).