Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2012

Supporting Information

Fig. S1 TGA curves of (a) ZnV₂O₄-CMK nanocomposites and (b) mesoporous carbon CMK.

Fig. S2 N_2 adsorption-desorption isotherms of (a) the ordered mesoporous carbon CMK and (b) ZnV_2O_4 -CMK nanocomposites. Inset: pore size distributions from the desorption branch through the BJH method.

According to the approach proposed by Huggins et al, the apparent diffusion coefficient of Li^+ in electrode material, D_{Li} , can be calculated by the following equ. (1) ^[S1, S2]:

$$D_{Li} = \frac{1}{2} \left[\left(\frac{\mathrm{Vm}}{\mathrm{FAS}} \right) \left(\frac{\partial \mathrm{E}}{\partial \mathrm{X}} \right) \right]^2 \tag{1}$$

where V_m is the electrode material molar volume; F is the Faraday constant; A is a constant which contains a concentration independent diffusion coefficient, which can be obtained from the diffusion impedance ($Z_w^*=$ A $\omega^{-1/2}$ - jA $\omega^{-1/2}$) (see Fig. S3); S is the effective electrode surface area; $\frac{\partial E}{\partial X}$ is the voltage change upon discharging.

The relationship between Z_{re} and $\omega^{-0.5}$ in the low frequency region is shown in Fig. S3. The Warburg factors are 13.5 for ZnV_2O_4 -CMK nanocomposites (A_a) and 38.5 for bulk ZnV_2O_4 (A_b), respectively. The value of A_b is 2.8 times as large as that of A_a.

Fig. S3 The relationship between Z_{re} and $\omega^{-0.5}$ for (a) ZnV_2O_4 -CMK nanocomposites and (b) bulk ZnV_2O_4 .

If D_{Li} in the anode of ZnV_2O_4 -CMK nanocomposites is same as that of the bulk ZnV_2O_4 , the ratio of the effective surface area between the ZnV_2O_4 -CMK nanocomposites and the bulk ZnV_2O_4 can be expressed as the following equ (2)

$$n = \frac{S_{a}}{S_{b}} = \frac{\left(\frac{\partial E}{\partial X}\right)_{a} A_{b}}{\left(\frac{\partial E}{\partial X}\right)_{b} A_{a}}$$
(2)

which results in n=2.8, indicating 2.8 times as high as effective electrode surface area of the ZnV_2O_4 -CMK nanocomposites compared to that of the bulk ZnV_2O_4 . A low charge-transfer resistance and high effective surface of the electrode are favored for electron and Li⁺ transport in ZnV_2O_4 -CMK nanocomposites.

On the other hand, the diffusion coefficient of Li^+ can be calculated from the plots in the low-frequency region according to the following equs ^[S3, S4]:

$$D = \frac{R^2 T^2}{2A^2 n^2 F^4 C^2 \sigma^2}$$
(3)

$$Zre = R_{ct} + R_{e} + \sigma_{w}\omega^{-0.5}$$
⁽⁴⁾

where R is the gas constant, T is the room temperature in our experiment, n is the number of electron per molecule oxidized, A is the surface area, F is Faraday's constant, C is the concentration, D is the diffusion coefficient, and σ is the Warburg factor.

The Warburg factors σ are 13.5 for ZnV₂O₄-CMK nanocomposites (σ_a) and 38.5 for bulk ZnV₂O₄ (σ_b), respectively. The value of σ_b is 2.8 times as large as that of σ_a . If other parameters are fixed, the diffusion coefficient of ZnV₂O₄-CMK nanocomposites is larger than that of bulk ZnV₂O₄. The electronic conductivity of ZnV₂O₄-CMK sample was enhanced due to the good electrical conductivity of CMK in the nanocomposites, where they served as both an active material and a conductor in the anode. Thus, the cycle performance of ZnV₂O₄-CMK nanocomposites can be improved significantly.

In fact, the results of EIS simulation analysis which carried out by two models mentioned above are all consistent with our experimental results.

Refs.

[S1] C. Ho, I. D. Raistrick and R. A. Huggins, J. Electrochem. Soc., 1980, 127, 343-350.

[S2] P. P. Prosini, M. Lisi, D. Zane and M. Pasquali, Solid State Ionics, 2002, 148, 45-51.

[S3] Q. Cao, H. P. Zhang, G. J. Wang, Q. Xia, Y. P. Wu and H. Q. Wu, *Electrochem. Commun.*, 2007, 9, 1228-1232.

[S4] X. Y. Wang, H. Hao, J. L. Liu, T. Huang and A. S. Yu, *Electrochimica Acta.*, 2011, 56, 4065-4069.