Electronic Supplementary Information

Fullerene bisadduct as effective phase-separation inhibitor in preparing poly(3-hexylthiophene)/[6,6]-phenyl-C₆₁-butyric acid methyl ester blends with highly stable morphology

Hung-Wei Liu,^a Deng-Yang Chang,^b Wen-Yem Chiu,^{a,c,d} Syang-Peng Rwei,^b and Leeyih Wang^{*a e}

^a Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106, Taiwan
^b Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan

^c Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
^d Department of Materials Science and Engineering, National Taiwan University, Taipei, 106, Taiwan
^e Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan

Figure S1 X-ray diffraction patterns of the films of P3HT/PCBM:bis-PCBM ternary blends with various weight percentage of bis-PCBM over the sum of both fullerene derivatives, which were annealed at 150 °C for 10 min.

(a)

Figure S2 $J^{0.5}$ vs. V plots for the (a) electron-only (ITO/SAM (4-aminobenzoic acid)/active layer/Ca/Al) and (b) hole-only (ITO/PEDOT:PSS/active layer/Ag) devices based on P3HT/PCBM:bis-PCBM blends with various weight percentage of bis-PCBM over the sum of both fullerene derivatives.

Figure S3 Energy-dispersive X-ray spectroscopy (EDS) spectrum of the surface of micro-sized clusters appeared in the P3HT/PCBM blend after aging at 150 °C for 900 min.

Figure S4 TEM images of the films of (a) P3HT/PCBM (b) P3HT/PCBM:bisPCBM (1:0.73:0.07) after aging at 150 °C for 900 min. (scale bar: $0.2 \mu m$).

(a)

(b)

Figure S5 Optical microscopy images of the films of the P3HT/PCBM blends with a weight ratio of (a) 1:0.73, and (b) 1:0.67, which were heated at 150 °C for 15 hours.

bis-PCBM (wt%)	FWHM	Diffraction peak (20)	d-spacing (nm)	Grain size of P3HT crystallites (nm)
0%	0.707	5.37	16.7	11.2
4.1%	0.691	5.31	16.7	11.5
8.3%	0.685	5.34	16.7	11.6
17%	0.668	5.29	16.7	11.9
100%	0.657	5.34	16.7	12.1

Table S1 XRD data of P3HT/PCBM:bis-PCBM films with various weight percentage of bis-PCBM over the sum of both fullerene derivatives

FWHM: the full width at the half maximum

Table S2 Electron and hole mobilities of P3HT/PCBM:bis-PCBM films with various weight percentage of bis-PCBM over the sum of both fullerene derivatives, which are determined by using the SCLC method

bis-PCBM (wt%)	$\mu_e (cm^2/Vs)$	$\mu_h (cm^2/Vs)$	μ_{e}/μ_{h}
0%	3.64×10 ⁻⁴	1.86×10 ⁻⁴	1.95
4.1%	3.47×10 ⁻⁴	2.82×10^{-4}	1.23
8.3%	3.38×10 ⁻⁴	3.04×10 ⁻⁴	1.11
17%	3.03×10 ⁻⁴	3.27×10 ⁻⁴	0.92
100%	1.04×10^{-4}	3.34×10 ⁻⁴	0.31