Supporting information available:

Synthesis of TiO₂-WO₃ nanocomposites as a highly sensitive benzene sensor and a high efficiency absorbent

Ying Zhu,^a Xintai Su,^{*a} Chao Yang,^a Xiaoqing Gao,^a Feng Xiao,^a and Jide Wang^a

¹ Ministry Key Laboratory of Oil and Gas Fine Chemicals, College of Chemistry and Chemical Engineering, Xinjiang University, 14 Shengli Rd., urumqi, China

*To whom correspondence should be addressed. Tel: +86 991 8581018; Fax: +86 991 8582807; E-mail: <u>suxintai827@163.com</u>.

1. Materials

Unless otherwise stated, all reagents and chemicals were obtained commercially and used without further purification.

2. Characterization

X-ray diffraction (XRD) patterns of the products were recorded on a DX-1000 X-ray diffractometer equipped with graphite monochromatized Cu-K α radiation (λ = 1.54056 Å). The microstructure of the TiO₂-WO₃ nanocomposites was investigated by Transmission electron microscopy (TEM, Hitachi H-600, Japan) and scanning electron microscopy (SEM, LEO1430VP, Germany). UV-vis absorption spectra were recorded with a Shimadzu UV-2450. The BET and BJH results were measured on a nitrogen adsorption apparatus (JW-BK, China) at 77 K.

3. Gas sensing

Fig. S1 The correlation between the concentration and the response (R_a/R_g) to three gases of the TiO₂-WO₃ composites $(n_{Ti}:n_W=4:1)$ of methanol; ethyl acetate; benzene; toluene; xylene; at 340 °C; 400 °C; 400 °C; 440 °C; 420 °C, respectively.

Fig. S2 The correlation between the concentration and the response (R_a/R_g) to three gases of the TiO₂-WO₃ composites $(n_{Ti}:n_W=2:1)$ of acetone; methanol; ethyl acetate; benzene; toluene; xylene at 370 °C;340 °C; 400 °C; 400 °C; 440 °C; 420 °C, respectively.

Fig. S3 The correlation between the concentration and the response (R_a/R_g) to three gases of the TiO₂-WO₃ composites $(n_{Ti}:n_W=1:1)$ of acetone; methanol; ethyl acetate; benzene; toluene; xylene at 370 °C; 340 °C; 400 °C; 400 °C; 440 °C; 420 °C, respectively.

Fig. S4 The correlation between the concentration and the response (R_a/R_g) to three gases of the TiO₂-WO₃ composites $(n_{Ti}:n_W=1:2)$ of methanol; ethyl acetate; toluene; xylene at 340 °C; 400 °C; 440 °C; 420 °C, respectively.

Fig. S5 The correlation between the concentration and the response (R_a/R_g) to three gases of the TiO₂-WO₃ composites $(n_{Ti}:n_W=1:4)$ of ethanol; acetone; methanol; ethyl acetate; benzene; toluene; xylene at 340 °C; 370 °C; 420 °C; 400 °C; 400 °C; 440 °C; 420 °C, respectively.

Fig. S6 The correlation between the concentration and the response (R_a/R_g) to three gases of the TiO₂-WO₃ composites $(n_{Ti}:n_W=0:1)$ of ethanol; acetone; methanol; ethyl acetate; benzene; toluene; xylene at 340 °C; 370 °C; 420 °C; 400 °C; 400 °C; 440 °C; 420 °C respectively.

4. Adsorption

Fig. S7 Adsorption rate of the methylene blue (MB) on (a) fresh TiO_2 -WO₃ composites ($n_{Ti}:n_W=1:0$); (b) secondary; (c) third, respectively.

Fig. S8 Adsorption rate of the MB on (a) fresh TiO_2 -WO₃ composites ($n_{Ti}:n_W=4:1$); (b) secondary; (c) third, respectively.

Fig. S9 Adsorption rate of the MB on (a) fresh TiO_2 -WO₃ composites ($n_{Ti}:n_W=2:1$); (b) secondary; (c) third, respectively.

Fig. S10 Adsorption rate of the MB on (a) fresh TiO_2 -WO₃ composites ($n_{Ti}:n_W=1:1$); (b) secondary; (c) third, respectively.

Fig. S11 Adsorption rate of the MB on (a) fresh TiO_2 -WO₃ composites ($n_{Ti}:n_W=1:2$); (b) secondary; (c) third, respectively.

Fig. S12 Adsorption rate of the MB on (a) fresh TiO_2 -WO₃ composites ($n_{Ti}:n_W=1:4$); (b) secondary; (c) third, respectively.

Fig. S13 Adsorption rate of the MB on (a) fresh TiO_2 -WO₃ composites ($n_{Ti}:n_W=0:1$); (b) secondary; (c) third, respectively.