Supporting Information

One-Pot Synthesis of N-Doped Carbon Dots with Tunable Luminescence Properties

Yan-Qing Zhang,^a De-Kun Ma,^{a*} Yan Zhuang,^b Xi Zhang,^b Wei Chen,^a Li-Li Hong,^a Qing-Xian Yan,^a Kang Yu,^b and Shao-Ming Huang^{a*}

^aNanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027, P. R. China

^bDepartment of Hematology, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325027, P. R. China

Synthesis of the samples: In a typical process for synthesis of N-doped CDs with tunable fluorescent emission, 1 mL of CCl_4 and 0.5 g of NaNH₂ were put into a 50 mL of Teflon-lined stainless autoclave, which was filled with 10 mL of methylbenzene. Then the autoclave was sealed and maintained at 200 °C for an appropriate period of time. After it was naturally cooled to room temperature, the as-obtained solution was washed with ultrapure water and absolute ethanol for several times and then separated centrifugally. The resultant solid products were obtained through freeze drying.

Synthesis of C dots: 2 mL of CCl_4 and a piece of Aluminum foil (thickness: 0.25 mm, length: 10 mm, width: 10mm, used after rinsing with diluted hydrochloric acid, distilled water, and ethanol, respectively) were put into a stainless steel autoclave with a Teflon liner of 30 mL capacity. The autoclave was sealed and heated at 220 °C for 4 h and then cooled in air to room temperature. The remaining Al foil was taken out and the as-obtained solution was washed with ultrapure water and absolute ethanol for several times. Then it was separated centrifugally. The resultant solid products were obtained through freeze drying.

Characterizations: Transmission electron microscopy (TEM) and high-resolution transmission electron (HRTEM) images were taken on a Tecnai G2 F30 S-Twin high-resolution transmission electron microscope (Philips-FEI Inc.), using an accelerating voltage of 300 kV. Atomic force microscope (AFM) images were recorded on a nanoscope IIIa atomic force microscope with tapping mode. The measurements of C, H, and N elements were performed on a PE 2400II CHNS/O elemental analyzer. X-ray photoelectron spectroscopy (XPS) measurements were carried out with a Thermo ESCALAB 250 X-ray photoelectron spectrometer with an exciting source of Al K α = 1253.6 eV. Infrared spectra were obtained on a Bruker EQUINOX 55 Fourier transform infrared (FTIR) spectrometer ranged from 4000 to 400 cm⁻¹. ¹³C nuclear magnetic resonance (NMR) spectrum was measured on a Bruker 500 MHz spectrometer, using CDCl₃ as the solvent. Zeta-potential measurement was carried out on a Zetasizer nano ZS90 (Malvern). UV-visible (UV-vis) absorption spectra of the samples were recorded on a Shimadzu UV2501PC spectrophotometer. Powder X-ray diffraction (XRD) was performed on a Bruker D8 Advance X-ray diffractometer using Cu K α radiation ($\lambda = 0.15418$ nm) at a scanning rate of 8° /min in the 20 range from 10 to 70°. The photoluminescence (PL) spectra and quantum yields (QY) were measured on a Fluoromax-4 spectrofluorometer (HORIBA Jobin Yvon Inc.) equipped with an integrating sphere. The imaging of peritoneal macrophages of mice was carried out on a conventional inverted fluorescence microscopy, using Hg lamp as light source equipped with UV, red, and green filters.

Imaging of peritoneal macrophages of mice: Four C57BL/6 mice with ages of 6-8 weeks were divided into two groups. A group of mice was supplied with 0.8 mL of N-doped CDs saline through intraperitoneal injection. B group was only provided with the same amount of blank saline. Mice were sacrificed by cervical dislocation after two days, and then they were disinfected by 75% of ethanol solution for 5 min. Subsequently, 8 mL of serum-free Dulbecco's Modified Eagle's Medium (DMEM) culture solution was injected into the abdomens of mice. Standing for about five min, then 4 mL of ascitic fluid was extracted through a syringe under aseptic conditions. After separated centrifugally and washed, they were counted under microscopy. The conventional DMEM (including 10% fetal calf serum, penicillin 100U/mL, streptomycin 100 μ g/mL) was used to adjust the cells to desired concentration about 10⁵/mL. The cells were cultured in 6-well cell culture plate in CO₂ gas incubator at 37 °C and 5% of CO₂. In order to remove a small quantity of non-adherent cells, the DMEM culture solution was changed after 12 h. After another 12 hours' culture, the cells were imaged and observed on a conventional inverted fluorescence microscopy equipped with different filters.

Figure S1. AFM analysis of sample 1.

Figure S2. AFM analysis of sample 2.

Figure S3. XPS survey of sample 1 (a) and 2 (b).

Figure S4. FTIR spectra of sample 1 (a) and 2 (b).

Figure S5. ¹³C NMR spectrum of sample 2 in CDCl₃.

Figure S6. UV-vis absorption spectra of sample 1 and 2.

Figure S7. Zeta potential of sample 2 measured in near neutral water.

Figure S8. The normalized PL emission spectra of the samples respectively obtained at 200 °C for 1, 2, 4, 8, 12, and 16 h excited at wavelength of 365 nm.

Figure S9. Content of N-emission wavelength curve of the samples respectively obtained at 200 °C for 1, 2, 4, 8, 12, and 16 h excited at wavelength of 365 nm.

Figure S10. The normalized PL excitation spectra of the samples respectively obtained at 200 °C for 1, 2, 4, 8, and 12 h monitored at corresponding maximum emission wavelength.

Figure S11. XRD pattern of the products obtained without washing.

Figure S12. PL emission spectra of the samples synthesized at different reaction conditions: (a) 1 h, 1 g of NaNH₂, (b) 4 h, 0.5 g of NaNH₂.

Figure S13. TEM images and corresponding particles size distribution of the samples obtained at different reaction conditions: (a, c) 1 h, 1 g of NaNH₂, (b, d) 4 h, 0.5 g of NaNH₂.

Figure S14. AFM analysis of the as-synthesized C.

Figure S15. PL emission spectra of C dots under excitation of 365 nm wavelength.

Figure S16. PL emission spectra of the samples excited at 365 nm: (a) B-doped carbon dots and (b) S-doped carbon dots.

Figure S17. Optical photographs of the samples (from left to right, S-doped carbon dots and B-doped carbon dots) illuminated under daylight (top) and UV light (365 nm, bottom).

Figure S18. The peritoneal macrophages of mice treated without N-doped CDs were imaged under bright field (a), UV light (b), blue light (c), and green light excitation (d), respectively.

Sample	CCl ₄	NaNH ₂	Reaction	С	Н	N	Quantum	Quantum
	(mL)	(g)	Time (h)	(wt %)	(wt %)	(wt %)	Yield ^[a]	Yield ^[b]
1	1	0.5	1	81.83	6.94	3.06	3.50%	3.50%
2	1	0.5	8	86.84	5.05	7.17	13.40%	22.4%
3	1	0.5	2	82.08	6.51	3.57	9.40%	10.9%
4	1	0.5	4	86.46	6.01	4.34	13.20%	13.8%
5	1	0.5	12	87.12	3.18	8.54	10.30%	11.7%
6	1	0.5	16	87.36	2.16	9.36	11.30%	12.7%
7	1	1	1	88.14	5.84	3.41	3.70%	3.70%

Table 1. The C, H, N content of the samples synthesized at different reaction conditions

[a] Quantum yields of all the samples measured at the same excitation wavelength of 365 nm. [b] Quantum yields of all the samples measured under the strongest emission conditions, which were excited at 365, 380, 375, 379, 408, 412, and 365 nm, respectively.