Supplementary Information for

A new nanocomposite polymer electrolyte based on Poly(vinyl alcohol) incorporating hypergrafted nano-silica

Xian-Lei Hu^{a,b}, Gao-Ming Hou^{a,b}, Ming-Qiu Zhang^b, Min-Zhi Rong^b, Wen-Hong Ruan^{*b}, Emmanuel P. Giannelis^{*c}

Scheme.S1 The illustration of the synthesis process

Fig.S1 TGA spectrum of SiO_ $_{\rm S}$ SiO_-KH550 $_{\rm S}$ SiO_-KH550-MMA and SiO_-g-HBPAE

Tab. S1 Thermal decomposition temperatures from the	TGA	test of nano-silica
---	-----	---------------------

	Initial	Peak	Final	Grafting
Samples	decomposition	decomposition	decomposition	ratio
	temperature (°C)	temperature (°C)	temperature (°C)	(%)
SiO ₂	-	-	-	0
SiO ₂ -KH550	395	543	681	9.6
SiO ₂ -KH550-MMA _(first)	161	206	261	13.4
SiO ₂ -KH550-MMA _(second)	362	458	526	
SiO ₂ -g-HBPAE _(first)	181	231	322	112.6
SiO ₂ -g-HBPAE _(second)	368	434	492	

First represents the First decomposition Peak

Second represents the Second decomposition Peak

The grafting ratio is calculate from the curves in Fig.S1(b)

The Mass spectrum of AB₂ monomer

Fig.S2 The Mass Spectrometry of AB_2 monomer

$$DB = \frac{D+T}{D+T+L} = \frac{T-1+T}{T-1+T+L} \approx \frac{2T}{2T+L} = \frac{1}{1+\frac{L}{2T}}$$
Equation.S1
$$= \frac{1}{1+\frac{1.00+1.25}{2*2.44}} = 0.68$$
Equation.S1

Tab.S2 The content of element on the surface of nano-silica before and after hypergrafting

Samples	Si	Ο	С	Ν
SiO ₂ -KH550-MMA (Before grafting)	21.53%	48.35%	26.20%	3.06%
SiO ₂ -KH550-MMA-g-HBPAE (After grafting)	20.60%	38.91%	35.14%	5.35%

The morphology of fracture surface of PVA matrices

Fig. S5 SEM images of SiO₂-g-HBPAE/PVA composite polyelectrolyte at different loading of nano-silica at a fixed content of 30wt% LiClO₄

The tensile properties of CPEs with high $\rm LiClO_4$ doping content with various SiO_2-g-HBPAE loading

Fig.S6 Typical tensile stress-strain curves of composite polymer electrolytes measured at 30 $^{\circ}$ C with different SiO₂-g-HBPAE loading at a fixed content of 54wt% LiClO_{4 $^{\circ}$}

References

- 1 C. J. Hawker, R. Lee and J. M. J. Frechet, J Am. Chem. Soc., 1991, 113, 4583.
- 2 C. Gao and D. Yan, Prog. Polym. Sci., 2004, 29, 183.