Supplementary Material

Structure, defects and thermal stability of delithiated olivine phosphates

Gene M. Nolis,^{*a*} Fredrick Omenya,^{*a*} Ruibo Zhang,^{*a*} Bin Fang,^{*a*} Shailesh Upreti,^{*a*} Natasha A. Chernova,^{*a*} Feng Wang,^{*b*} Jason Graetz,^{*b*} Yan-Yan Hu,^{*c,d*} Clare P. Grey,^{*c,d*} and M. Stanley Whittingham^{**a,d*}

^aDepartment of Chemistry and Materials Science and Engineering Program, Binghamton University, Binghamton, NY, 13902-6000, ^bBrookhaven National Laboratory, Upton, NY 11973, ^cChemistry Department, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, UK, ^dChemistry Department, Stony Brook University, Stony Brook, New York 11794-3400, *Corresponding author Email: stanwhit@gmail.com

X-ray diffraction

The phase purity of both pristine LiFe_{1-y}Mn_yPO₄ and Fe_{1-y}Mn_yPO₄ products was first checked by powder x-ray diffraction (Figure S1). All samples were indexed with single-phase orthorhombic, *Pnma* space group, and have an olivine-type structure. Figure S1 summarizes unit cell dimensions for both olivine-type compounds obtained by Rietveld refinement. In addition, room-temperature synchrotron XRD patterns from the *in-situ* scans of delithiated olivine phosphate samples were refined; the resulting lattice parameters are also shown in figure S1 and do not show significant differences. Lattice parameters of *o*-LiFe_{1-y}Mn_yPO₄ match those reported in the literature and show characteristic isotropic expansion of orthorhombic lattice constants as a function of manganese content.¹ However, unlike their parent materials, *o*-Fe_{1-y}Mn_yPO₄ show anisotropic lattice expansion with manganese content; matching trends reported earlier by Yamada et al.¹ Rietveld refinement did not reveal additional electronic density at Li site, indicating that transition metals did not migrate to Li site upon delithiation; however, this technique is not very sensitive to residual, light-weight Li ions. Further characterization was pursued to determine Fe and Mn oxidation states correlating with possible residual Li.

Figure S1. (a) Synchrotron X-ray diffraction patterns of $Fe_{1-y}Mn_yPO_4$, numbers indicate Mn content y. (b) Variation of the orthorhombic lattice parameters as a function of Mn, y, content in *o*-LiFe_{1-y}Mn_yPO₄ and *o*-Fe_{1-y}Mn_yPO₄.

X-ray absorption spectroscopy

XAS was utilized as a characterization method because it is sensitive to electronic and structural states of transition metals. Figures S2 and S3 indicate that the parent, lithiated species contained Fe^{2+} and Mn^{2+} in their correct oxidation states for all samples. Similarly, Fe^{3+} is in its correct oxidation state for all delithiated, *o*-Fe_{1-y}Mn_yPO₄ samples. However, at high manganese concentrations in *o*-Fe_{1-y}Mn_yPO₄, y = 0.8, 0.9 and 1, the absorption edge of Mn³⁺ signals at lower energy, suggesting incomplete delithiation with residual Mn²⁺. NMR studies were carried out to further investigate this problem.

Figure S2. Fe K-edge x-ray absorption spectra for (a) o-LiFe²⁺_{1-y}Mn²⁺_yPO₄ and (b) o-Fe³⁺_{1-y}Mn³⁺_yPO₄.

Figure S3. Mn K-edge x-ray absorption spectra for (a) *o*-LiFe²⁺_{1-y}Mn²⁺_yPO₄ and (b) *o*-Fe³⁺_{1-y}Mn³⁺_yPO₄.

⁷Li solid-state nuclear magnetic resonance (NMR)

⁷Li solid state NMR is particularly useful to detect the existence of any residual Li and study its local environment. The ⁷Li solid state NMR of delithiated olivine metal phosphates does not show significant ⁷Li signals up to Mn concentrations of y = 0.4. At higher Mn concentrations, however, quantitative analysis shows that *o*-Fe_{0.6}Mn_{0.4}PO₄, *o*-Fe_{0.4}Mn_{0.6}PO₄, *o*-Fe_{0.2}Mn_{0.8}PO₄ and *o*-Fe_{0.1}Mn_{0.9}PO₄ contain some residual Li; results are summarized in Table S1. According to Figure S4, the residual ⁷Li NMR signal resonates close to the chemical shift of ⁷Li in *o*-LiMnPO₄, but gradually shifts to a lower field as Fe content increases, which is due to the increased degree of delithiation leading to higher oxidation states of the Fe/Mn ions. The ⁷Li signal from the delithiation product of the pure *o*-LiMnPO₄ resembles that of the pristine *o*-LiMnPO₄. However, the residual ⁷Li peaks of *o*-Fe_{0.6}Mn_{0.4}PO₄, *o*-Fe_{0.4}Mn_{0.6}PO₄, *o*-Fe_{0.2}Mn_{0.8}PO₄ and *o*-Fe_{0.1}Mn_{0.9}PO₄ also show significant broadening compared to that of (Li)MnPO₄, likely induced by the presence of Fe²⁺. Therefore, the residual Li in these samples is in a Mnrich, but Fe-containing environment.

Figure S4. ⁷Li NMR spectra for pristine *o*-LiFePO₄ and *o*-Li_xFe_{1-y}Mn_yPO₄. The spectrum intensity of *o*-LiFePO₄ is scaled by 1/40.

У	H, wt.% try 1	H, wt.% try 2	C, wt.% try 1	C, wt.% try 2	Residual Li, (wt.%)	Average Sample Composition [*]
0	0.0013	0.0024	0.0216	0.023	0.0167	$H_{0.28}Li_{0.004}FePO_4C_{0.28}$
0.4					0.045	$Li_{0.01}Fe_{0.6}Mn_{0.4}PO_4$
0.6					0.0766	$Li_{0.016}Fe_{0.4}Mn_{0.6}PO_4$
0.8	0.0018	0.0025	0.048	0.0466	0.0704	$H_{0.32}Li_{0.015}Fe_{0.2}Mn_{0.8}PO_4C_{0.59}$
0.9	0.0014	0.0026	0.0614	0.0599	0.121	$H_{0.30}Li_{0.026}Fe_{0.1}Mn_{0.9}PO_4C_{0.76}$
1.0					0.123	Li _{0.027} MnPO ₄

Table S1. *o*-Fe_{1-v}Mn_vPO₄ sample compositions from ⁷Li NMR and CH analysis.

^{*} The composition reflects molar ratios of the elements in the samples; it does not imply that such compound is actually formed.

Scanning transmission electron microscopy (STEM) with electron energy loss spectroscopy (EELS)

In addition to ⁷Li NMR, STEM-EELS were used to make local chemical analysis of the delithiated olivine phosphates, with high sensitivity to the location and chemical state of residual Li.² According to Figs. 2 and S5, particle size for these samples is approximately 100 ± 50 nm. STEM-EELS analysis in Fig. S5 indicates complete Li removal from *o*-LiFePO₄, confirming ⁷Li NMR results. However, STEM-EELS indicates small amount of Li remaining after delithiation *o*-LiFe_{0.1}Mn_{0.9}PO₄, as evidenced by the presence of the Li K-edge peak. Furthermore, TEM results indicate good crystallinity for samples, consistent with PXRD patterns.

Figure S5. Chemical analysis of o-FePO₄ and o-Fe_{0.1}Mn_{0.9}PO₄ by STEM-EELS. The regions to acquire the EELS spectra (top) were indicated by circles with different colors in the annual dark-field images (bottom).

In-situ high-temperature X-ray diffraction.

Figure S6. In-situ XRD data while heating o-FePO₄ to 800 °C under (a) helium and (b) oxygen.

Figure S7. *In-situ* XRD data while heating o-Fe_{1-y}Mn_yPO₄ to 800 °C under helium. (a) y = 0.2, (b) y = 0.8.

Figure S8. *In-situ* XRD data refinements while heating o-FePO₄ between 250 and 400 °C under (a) helium and (b) oxygen.

Thermogravimetric Analysis, Differential Scanning Calorimetry and Mass Spectrometry

According to Fig. S9, two notable thermal events occurred at 500 °C and 530 °C; when *o*- $Fe_{0.8}Mn_{0.2}PO_4$ was heated to 725 °C under inert atmospheric conditions during calorimetry testing. The first thermal event, occurring with a peak maximum at 500 °C, is accompanied by a 4 % weight loss and is associated with an exothermic transition enthalpy of 165.3 J g⁻¹. In addition, a second exothermic phase transition, with a peak maximum at approximately 600 °C, accounts for 155.8 J g⁻¹ of heat evolved.

Furthermore, Fig. S9 shows a large exothermic transition, releasing 350 J g⁻¹ of heat, occurs at 535 °C for Fe_{0.6}Mn_{0.4}PO₄. Mass-spectroscopy analysis of the heating process indicates H₂O evolution above 300 °C, suggesting the delithiated olivine phosphate systems are hydrophilic by nature, consistent with previous reports.³ The source of residual carbon in *o*-Fe_{0.6}Mn_{0.4}PO₄, and ultimately CO₂, likely originates from the carbon-containing precursors. *In-situ* x-ray analysis of this sample indicates a major phase transformation occurring above 650 °C; due to the slow kinetics of solid systems, this phase change is associated with the exothermic event at 535 °C, seen in DSC results. Phase refinement of the end product, after heating to 800 °C, during *in-situ* analysis indicates a major product formation of (Fe,Mn)₂P₂O₇, consistent with theoretical predictions and observed oxygen evolution above 700 °C.

Figure S9. (a) DSC, (b) TGA and (c) MS curves showing thermal events while heating o-Fe_{0.8}Mn_{0.2}PO₄ (red lines), o-Fe_{0.6}Mn_{0.4}PO₄ (blue lines) and o-Fe_{0.1}Mn_{0.9}PO₄ (black lines) in inert atmospheric conditions. The shift in the temperature between DSC, TGA and MS data is caused by the fact that the MS data was taken during in-situ XRD scans and it takes extra time for the gas to get to the gas analyzer in this experimental setup.

SEM of nano-LiFe_{0.25}Mn_{0.75}PO₄

Figure S10. SEM image of nano-LiFe_{1-y}Mn_yPO₄ (0.7 < y < 0.75).

References

- 1. A. Yamada, S.-C. Chung, J. Electrochem. Soc., 2001, 148, A960.
- 2. F. Wang, J. Graetz, M. Moreno, C. Ma, L. Wu, V. Volkov, and Y. Zhu, ACS Nano, 2011, 5, 1190.
- 3. G. Chen, A. Shukla, X. Song and T. Richardson, J. Mater. Chem., 2011, 21, 10126.